The Two-Squirrel Problem and Its Relatives

Sergey Bereg¹, Yuya Higashikawa², Naoki Katoh², László Kozma³, Manuel Lafond⁴, Günter Rote³, Yuki Tokuni², Max Willert³, and Binhai Zhu⁵

- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA. besp@utdallas.edu
 - ² Graduate School of Information Science, University of Hyogo, Kobe, Japan. {higashikawa,naoki.katoh,ad21o040}@gsis.u-hyogo.ac.jp

 ³ Institut für Informatik, Freie Universität Berlin, Germany. {lkozma,rote,willerma}@inf.fu-berlin.de
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada, manuel.lafond@usherbrooke.ca
- ⁵ Gianforte School of Computing, Montana State University, Bozeman, MT 59717, USA, bhz@montana.edu

Abstract. In this paper, we start with a variation of the star cover problem called the Two-Squirrel problem. Given a set P of 2n points in the plane, and two sites c_1 and c_2 , compute two n-stars S_1 and S_2 centered at c_1 and c_2 respectively such that the maximum weight of S_1 and S_2 is minimized. This problem is strongly NP-hard by a reduction from Equal-size Set-Partition with Rationals. Then we consider two variations of the Two-Squirrel problem, namely the Two-MST and Two-TSP problem, which are both NP-hard. The NP-hardness for the latter is obvious while the former needs a non-trivial reduction from Equal-size Set-Partition with Rationals. In terms of approximation algorithms, for Two-MST and Two-TSP we give factor 2.4268 and $2+\varepsilon$ approximations respectively. Finally, we also show some interesting polynomial-time solvable cases for Two-MST.

Keywords: Minimum star/tree cover \cdot NP-hardness \cdot Set-Partition \cdot Approximation algorithms \cdot Minimum spanning tree (MST) \cdot TSP

1 Introduction

Imagine that two squirrels try to fetch and divide 2n nuts to their nests. Since each time a squirrel can only carry a nut back, this naturally gives the following problem: they should travel along the edges of an n-star, centered at the corresponding nest, such that each leaf (e.g., nut) is visited exactly once (in and out) and the maximum distance they visit should be minimized (assuming that they travel at the same speed, there is no better way to enforce the fair division under such a circumstance). See Figure 1 for an illustration.

A star S is a tree where all vertices are leaves except one (which is called the *center* of the star). An n-star is a star with n leaf nodes. When the edges in S carry weights, the weight of S is the sum of weights of all the edges in S.

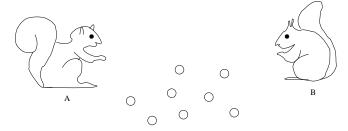


Fig. 1: Two squirrels A and B try to fetch and divide 2n nuts.

Given two points p, q in the plane, with $p = (x_p, y_p)$ and $q = (x_q, y_q)$, we define the Euclidean distance between p, q as $d(p, q) = |pq| = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$ and the L_1 or Manhattan distance between them is defined as $d_1(p, q) = |x_p - x_q| + |y_p - y_q|$.

Formally, the Two-Squirrel problem can be defined as: Given a set P of 2n points in the plane and two extra point sites c_1 and c_2 , compute two n-stars S_1 and S_2 centered at c_1 and c_2 respectively such that each point $p_j \in P$ is a leaf in exactly one of S_1 and S_2 ; moreover, the maximum weight of S_1 and S_2 is minimized. Here the weight of an edge (c_i, p_j) in S_i is $w(c_i, p_j) = d(c_i, p_j)$ for i = 1, 2. One can certainly consider a variation of the two-squirrel problem where the points are given as pairs (p_{2i-1}, p_{2i}) for i = 1, ..., n, and the problem is to split all the pairs (i.e., one to c_1 and the other to c_2) such that maximum weight of the two resulting stars is minimized. We call this version Dichotomy Two-Squirrel.

A more general (and probably more interesting) version of the problem is when the two squirrels only need to split the 2n nuts and each could travel along a Minimum Spanning Tree (MST) of the n points representing the locations of the corresponding nuts, which we call the Two-MST problem: Compute a partition of P into n points each, P_1 and P_2 , such that the maximum weight of the MST of $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$, i.e., $\max\{w(P_1 \cup \{c_1\}), w(P_2 \cup \{c_2\})\}$, is minimized. Similarly, we could replace MST with TSP to have the Two-TSP problem.

Covering a (weighted) graph with stars or trees (to minimize the maximum weight of them) is a well-known NP-hard problem in combinatorial optimization [3], for which constant factor approximation is known. Recently, bi-criteria approximations are also reported [4]. In the past, a more restricted version was also investigated on graphs [9]. Our Two-Squirrel problem can be considered a special geometric star cover problem where the two stars are disjoint though are of the same cardinality, and the objective function is also to minimize the maximum weight of them.

It turns out that, when the coordinates of points are rationals, both Two-Squirrel and Dichotomy Two-Squirrel are strongly NP-hard (under both the Euclidean and L_1 metric, though we focus only on the Euclidean case in this paper). The proofs follow directly from two variations of the famous Set-Partition

problem [5,6], namely, Equal-Size Set-Partition with Rationals and Dichotomy Set-Partition with Rationals, which are both strongly NP-hard with the recent result by Wojtczak [8]. We then show that Equal-size Set-Partition with Rationals can be reduced to Two-MST in polynomial time, which indicates that Two-MST is NP-hard. (Note that in this proof, the constructed points have real coordinates.) On the other hand, Two-TSP is obviously NP-hard as the TSP problem is NP-hard.

As for approximation algorithms, both Two-Squirrel and Dichotomy Two-Squirrel admit a FPTAS (note that this does not contradict the known result that a strongly NP-hard problem with an integral objective function cannot be approximated with a FPTAS unless P=NP, simply because our objective functions are not integral). This can be done by first designing a polynomial-time dynamic programming algorithm through scaling and rounding the distances to integers, obtaining the corresponding optimal solutions, and then tracing back to obtain the approximate solutions. The approximation algorithm for Two-MST is more tricky; in fact, with a known lower bound by Chung and Graham related to the famous Steiner Ratio Conjecture [2], we show that a factor 2.4268 approximation can be obtained. Using a similar method, we show that Two-TSP can be approximated with a factor of $2 + \varepsilon$.

In the end, we show two interesting polynomial-time solvable cases: when all the points in P and the two sites are on the X- and Y-axis, the problems are polynomially solvable under both the L_1 and L_2 distances. The running times are $O(n^4)$ and $O(n^{13})$ respectively.

The paper is organized as follows. In Section 2, we give some necessary definitions. In Section 3, we present our NP-hardness result for the Two-MST problem. In Section 4 we present the approximation algorithms for Two-TSP and Two-MST. In Section 5, we show the special polynomial-time solvable cases. And in Section 6 we conclude the paper.

2 Preliminaries

In this section, we first define Equal-size Set-Partition for Rationals and Dichotomy Set-Partition for Rationals which are generalizations of Set-Partition [5,6].

In Dichotomy Set-Partition with Rationals, we are given a set E of 2n positive rationals numbers (rationals, for short) with $E = E'_1 \cup E'_2 \cup \cdots E'_n$ such that $E'_i = \{a_{i,1}, a_{i,2}\}$ is a 2-set (or, $E'_i = (a_{i,1}, a_{i,2})$, i.e., as a pair) and the problem is to decide whether E can be partitioned into E_1 and E_2 such that every two elements in E'_i is partitioned into E_1 and E_2 (i.e., one in E_1 and the other in E_2 —clearly $|E_1| = |E_2| = n$) and $\sum_{a \in E_1} a = \sum_{b \in E_2} b$. (Equal-size Set-Partition with Rationals is simply a special case of Dichotomy Set-Partition with Rationals where E is given as a set of 2n rationals, i.e., $E = \{a_1, a_2, \cdots, a_{2n}\}$ and E'_i 's are not given.)

With integer inputs, both Dichotomy Set-Partition and Equal-size Set-Partition, like their predecessor Set-Partition, can be shown to be weakly NP-complete. Re-

4 Bereg et al.

cently, Wojtczak proved that even with rational inputs, Set-Partition is strongly NP-complete [8]. In fact, the proof by Wojtczak implied that Dichotomy Set-Partition and Equal-size Set-Partition are both strongly NP-complete — because in this reduction from a special 3-SAT each pair x_i and \bar{x}_i are associated with two unique rational numbers which must be split in two parts. So we re-state this theorem by Wojtczak.

Theorem 1. Equal-size Set-Partition with Rationals and Dichotomy Set-Partition with Rationals are both strongly NP-complete.

It is straightforward to reduce Equal-size Set-Partition with Rationals to Two-Squirrel (with rational coordinates) and Dichotomy Set-Partition with Rationals to Dichotomy Two-Squirrel (with rational coordinates), as each point is directly connected to either c_1 or c_2 . Hence, both Two-Squirrel and Dichotomy Two-Squirrel are strongly NP-hard when the coordinates of the input points are rational.

Coming to Two-MST, the story is quite different. Since the structure of an MST is not fixed (i.e., even if we know that two points $u, v \in P$ belong to T_1 , the MST of $P_1 \cup \{c_1\}$, we do not know how u, v are connected before T_1 is actually computed). Nonetheless, we show in the next section that Two-MST is NP-hard.

3 NP-hardness for Two-MST

In this section, we prove that the Two-MST problem (2-MST for short), is NP-hard. (Our construction requires that the coordinates of the points are real numbers.) Recall that in the 2-MST problem, one is given a set P of 2n points in the plane, together with two point sites c_1 and c_2 , the objective is to compute two MST T_1 and T_2 each containing n points in P (and c_1 and c_2 respectively) such that the maximum weight of T_1 and T_2 , $\max\{w(T_1), w(T_2)\}$, is minimized. Here the weight of any edge (p_i, p_j) or (p_i, c_k) in $T_k, k = 1..2$, is the Euclidean distance between the two corresponding nodes. We reduce Equal-size Set-Partition for Rationals [8] to 2-MST in the following. Note that in the proof by Wojtczak [8], a set S of 2n rationals, with a total sum of 2n, were constructed such that the only partition is to partition them into two equal-size sets with n rationals, each having a sum of value n.

Theorem 2. Two-MST is NP-hard.

Proof. We reduce Equal-size Set-Partition with Rationals to Two-MST. Note that, given $E = \{a_1, a_2, \cdots, a_{2n}\}$ where each a_i (i = 1..2n) is a rational number and $\sum_i a_i = 2t$, for Set-Partition with Rationals we need to partition E into two sets E_1 and E_2 such that $|E_1| = |E_2|$ and the rationals in E_1 and E_2 sum the same, i.e., $t = \sum_{a \in E_1} a = \sum_{b \in E_2} b$. We construct 10n + 4 points in P as well as 2 point sites c_1 and c_2 . We first show our ideas, then follow with the construction of these points with coordinates — mostly along the X-axis.

The building block of each a_i is a rectangle $B_i = (b_{i,1}, b_{i,2}, b_{i,4}, b_{i,3})$ in clockwise order with $b_{i,1}$ being the top-left corner point; in addition, p_i (on the X-axis)

is the center of this rectangle B_i (see Fig.2 (II)). In other words, each a_i will be transformed into a group of 5 points. The horizontal edge length of B_i is $24a_i$ and the height of B_i is $10a_i$; hence the distance from the center p_i to any of the corner point is $13a_i$. The crucial point is that, at B_i , if T_1 and T_2 start at $b_{i,1}$ and $b_{i,3}$ respectively, then one of them would include p_i and ending at $b_{i,2}$ and $b_{i,4}$ respectively (or vice versa). As a matter of fact, the difference of the parts of T_1 and T_2 spanning $B_i \cup \{p_i\}$ is $2 \times 13a_i - 2 \times 12a_i = 2a_i$. We place the B_i 's in a way such that the right edge of B_i and the left edge of B_{i+1} form an isosceles trapezoid T_i , symmetric along the X-axis, such that the non-vertical edges have a length of 2t (note that $2t > a_i, 2t > a_{i+1}$). As a matter of fact, going from left to right, if T_1 (resp. T_2) includes $b_{i,2}$ (resp. $b_{i,4}$), then the shortest paths from them to reach B_{i+1} are $< b_{i,2}, b_{i+1,1} >$ and $< b_{i,4}, b_{i+1,3} >$ respectively, which both have a length of 2t.

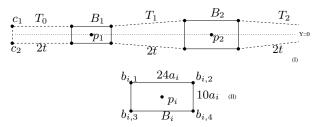


Fig. 2: Illustration for the reduction from Equal-size Set-Partition with Rationals to 2-MST, the left part (I). Block B_i , note that the distance from the center p_i to any of the 4 corners is $13a_i$ (II).

At the end of B_{2n} , we construct four points $b_{2n+1} = b_{2n+2}$ (on the X-axis), q and r. They form a regular triangle with $d(b_{2n+1},q) = d(b_{2n+1},r) = d(q,r) = 4nt$. As the distance d(q,r) is so large (compared with the optimal solution for 2-MST), the optimal solution must split them in a way such that $\{b_{2n+1},q\} \in T_1$ and $\{b_{2n+2},r\} \in T_2$ or vice versa. Moreover, we can set $d(b_{2n,3},b_{2n+1}) = d(b_{2n,4},b_{2n+1}) = 4nt$; i.e., $\langle b_{2n,3},b_{2n+1},b_{2n,4} \rangle$ form an isoceles triangle with long edge length 4nt (or we can say $\langle b_{2n,3},b_{2n+1},b_{2n+2},b_{2n,4} \rangle$ form a degenerate isoceles trapezoid T_{2n} with edge length 4nt. Obviously, in the optimal solution $b_{2n,3}$ and $b_{2n,4}$ must be split into T_1 and T_2 respectively, or vice versa.

We briefly discuss the coordinates of the points constructed; in fact, they could be constructed in an incremental way. First set $c_1 = (0, 10a_1), c_2 = (0, -10a_1)$, and construct the group of 5 points as the vertices and center of B_1 , with $b_{1,1} = (2t, 10a_1), b_{1,2} = (2t + 24a_1, 10a_1), b_{1,3} = (2t, -10a_1), b_{1,4} = (2t + 24a_1, -10a_1)$ and $p_1 = (2t + 12a_1, 0)$. Then we construct T_i and $B_{i+1} \cup \{p_i\}$ for i = 1 to 2n incrementally. WLOG, let $a_i \leq a_{i+1}$ and the coordinates of $b_{i,2}$ and $b_{i,4}$ be $b_{i,2} = (x_i, 10a_i)$ and $b_{i,4} = (x_i, -10a_i)$ respectively. Then the

coordinates of points in $B_{i+1} \cup \{p_{i+1}\}$ are

$$b_{i+1,1} = (x_i + \sqrt{(2t)^2 - (10(a_{i+1} - a_i))^2}, 10a_{i+1}),$$

,

$$b_{i+1,2} = (x_i + \sqrt{(2t)^2 - (10(a_{i+1} - a_i))^2} + 24a_{i+1}, 10a_{i+1}),$$

$$b_{i+1,3} = (x_i + \sqrt{(2t)^2 - (10(a_{i+1} - a_i))^2}, -10a_{i+1}),$$

$$b_{i+1,4} = (x_i + \sqrt{(2t)^2 - (10(a_{i+1} - a_i))^2} + 24a_{i+1}, -10a_{i+1})$$

and

$$p_{i+1} = (x_i + \sqrt{(2t)^2 - (10(a_{i+1} - a_i))^2} + 12a_{i+1}, 0).$$

The coordinates for b_{2n+1} and b_{2n+2} are $(x_{2n} + \sqrt{(4nt)^2 - (10a_{2n})^2}, 0)$, and the coordinated of q and r are $q = (x_{2n} + \sqrt{(4nt)^2 - (10a_{2n})^2} + 2\sqrt{3}nt, 2nt)$ and $r = (x_{2n} + \sqrt{(4nt)^2 - (10a_{2n})^2} + 2\sqrt{3}nt, -2nt)$. Note that to the right of B_1 , the points are virtually all having real coordinates. See Fig 2. (I) and Fig. 3 for the construction.

We show next that Equal-size Set-Partition with Rationals has a solution iff the 2-MST instance $P \cup \{c_1, c_2\}$ admits a solution with optimal weight of (12n+2)t.

"If part": If E can be partitioned into E_1 and E_2 such that $\sum_{a \in E_1} a = \sum_{b \in E_2} b = t$, we show how to construct two MST's as follows. Up to B_{2n} , we include all the points above the X-axis to T_1 and all the points below the X-axis to T_2 . For p_i 's, if $a_i \in E_1$ then we include p_i in T_1 , if $a_i \in E_2$ then we include p_i in T_2 (each will incur a cost of $2a_i$). We then include b_{2n+1} and b_{2n+2} (and q and q) to q and q and q are respectively. Obviously we have $|T_1| = |T_2| = 5n + 3$, and the weight of them are both (12n + 2)t.

"Only-if part": Now suppose that points in P are partitioned into P_1 and P_2 such that the MST's of $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$ are T_1 and T_2 respectively, and the maximum weight of T_1 and T_2 is (12n+2)t. Following the previous argument, we must split q and r (hence also b_{2n+1} and b_{2n+2} , and subsequently $b_{2n,2}$ and $b_{2n,4}$) into T_1 and T_2 to have a weight less than 16nt. Similarly, we need to split $b_{1,1}$ and $b_{1,3}$ into T_1 and T_2 as otherwise we would have a solution larger than (12n+2)t — since $d(c_1,b_{1,3}) > d(c_1,b_{1,1}) = 2t$ and $d(c_2,b_{1,1}) > d(c_2,b_{1,3}) = 2t$. Likewise, not splitting $b_{1,1}$ and $b_{1,3}$ into T_1 and T_2 , e.g., including both of them in T_1 or T_2 , would incur a cost of $2t + 10a_1 > 2t$, which would lead to a higher total cost.

We now show with induction that the current optimal solution (say T_1) for points up to B_i is 2it (the major cost) plus the cost of including some center p_j 's $(1 \leq j \leq i)$; moreover, T_1 must include $b_{i,2}$, T_2 must include $b_{i,4}$ and the cost of the other MST T_2 is minimized. The basis is obvious: since T_1 must include $b_{1,1}$ and T_2 must include $b_{1,3}$, to reach the end of B_1 (i.e., $b_{1,2}$ and $b_{1,4}$), T_1 needs to include $b_{1,2}$ and p_1 to maintain the optimality of a local solution $(2t+26a_1)$, and T_2 must include $b_{1,4}$ to have a cost of $2t+24a_1$. Note that if we let T_1 include p_1 and p_1 , and p_2 include p_1 , although the cost of p_2 remains

the same $(2t + 26a_1)$, the cost of T_2 becomes $2t + 26a_1$, which is not minimized anymore.

Now assuming the inductive hypothesis holds for i, let us consider B_{i+1} . In very much the same way, let the local optimal solution (say T_1) end at $b_{i,2}$, and T_2 end at $b_{i,4}$, with both the major cost being 2it. Clearly, in covering points in B_{i+1} , T_1 (resp, T_2) should not include $b_{i+1,3}$ (resp. $b_{i+1,1}$) as that will increase the major cost to more than 2(i+1)t (since in T_i , $d(b_{i,2},b_{i+1,3}) > d(b_{i,2},b_{i+1,1}) = 2t$ and $d(b_{i,4},b_{i+1,1}) > d(b_{i,4},b_{i+1,3}) = 2t$). Then, for the same argument as in the basis, if T_1 includes $b_{i+1,4}$ and T_2 includes $b_{i+1,2}$ then the cost of T_2 is not minimized.

At this point, it can be seen that the optimal solution boils down to split p_i 's to T_1 and T_2 . As we have 2n p_i 's and the splitting of each p_i would incur a cost of $2a_i$, by symmetry, the optimal solution must split them into T_1 and T_2 such that each would incur an additional cost of 2t (note that $\sum_{1 \leq i \leq 2n} a_i = 2t$), for a total cost of 2(2n)t + 2t + (4nt + 4nt) = (12n + 2)t. The splitting of these a_i 's in T_1 and T_2 would return us a solution for Equal-size Set-Partition with Rationals, i.e., if a_i is in T_1 then $E_1 \leftarrow E_1 \cup \{a_i\}$, and if a_i is in T_2 then $E_2 \leftarrow E_2 \cup \{a_i\}$; moreover $\sum_{a \in E_1} a = \sum_{b \in E_2} b = t$.

This reduction obviously takes linear time, hence the theorem is proven. \Box

We comment that with this proof, a variation of 2-MST, e.g., even if c_1 and c_2 are not given in advance, remains NP-hard. Also, with a minor modification we could show that Two-MST is NP-hard under the L_1 distance as well. In addition, Two-TSP is obviously NP-hard: given a set of points P and suppose we want to compute a TSP of P. We just create another copy of P, P' and translate P' to be far away from P (say, by a distance of 10 times the diameter of P), then fix a point p in P as c_1 and the corresponding copy p' in P' as c_2 . Then the optimal solution for TSP for P is exactly the same as the Two-TSP solution for $P \cup P' \cup \{c_1, c_2\}$.

In the next section, we present constant-factor approximations for Two-MST and Two-TSP.

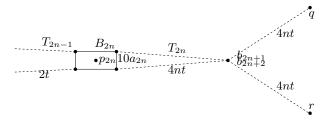


Fig. 3: Illustration for the reduction from Equal-size Set-Partition with Rationals to 2-MST, the right part.

4 Constant-factor Approximations for Two-TSP and Two-MST

Note that, when the coordinates of points are rational, both Two-Squirrel and Dichotomy Two-Squirrel admit a FPTAS. This can be done, as suggested by Wo-jtczak [8] for the corresponding counterparts of Set-Partition (with rationals), by first designing a polynomial-time dynamic programming algorithm through scaling and rounding the distances to integers, obtaining the corresponding optimal solutions, and then tracing back to obtain the approximate solutions. This method does not work for 2-TSP and 2-MST, and in this section we design constant-factor approximations for the two problems separately.

4.1 A $(2 + \varepsilon)$ -Approximation for Two-TSP

Recall that we are given a set P of 2n points in the plane, and two sites c_1 and c_2 . Our goal is to partition P into two sets P_1 and P_2 each of size n and find TSP tours of $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$ so that the maximum of the two tours is minimized.

Consider an (unknown) optimal partition $P_1 \cup P_2$ of P with optimal TSP tours T_1 of $P_1 \cup \{c_1\}$ and T_2 of $P_2 \cup \{c_2\}$. Denote the optimum value by $OPT = \max\{w(T_1), w(T_2)\}$. Let $d = \min\{d(x, y)\}$ over $x \in P_1 \cup \{c_1\}$ and $y \in P_2 \cup \{c_2\}$. In words, d is the smallest distance of a pair of points from different sides of the optimal partition.

Even though d is unknown, we can "guess it" by going through all the possible values, and taking the one that leads to the best solution. As there are at most $\binom{2n+2}{2} \in O(n^2)$ distances to consider, the overhead for doing this is a multiplicative factor of $O(n^2)$ in the running time. For a given value of d, we construct the graph G_d with vertex set $P \cup \{c_1, c_2\}$ and edge set $\{\{x, y\} \mid x, y \in P \cup \{c_1, c_2\}$ and $d(x, y) < d\}$. In words, G_d has edges between pairs of points that are at distance strictly less than d.

Notice that if c_1 and c_2 are in the same component of G_d , then our guess for d is wrong and the true value of d must be smaller. Similarly, if some component of G_d has more than n+1 vertices, then our value of d must be wrong. (In both cases, we would have an edge between $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$ of length less than d, contradicting the definition of d.) Constructing G_d and verifying both conditions (by simple traversal) takes $O(n^2)$ time.

If the component of c_1 or c_2 in G_d has exactly n+1 vertices, then it must exactly be the set $P_1 \cup \{c_1\}$ or $P_2 \cup \{c_2\}$ (assuming our value for d is the correct one). Having identified the optimal partition, we can obtain a $(1+\varepsilon)$ -approximate solution directly, using the known PTAS for TSP [1,7] to compute TSP tours of both sides of the partition.

Assume thus that the components of G_d that contain c_1 and c_2 both have fewer than n+1 vertices. Then, in the optimal 2-TSP solution both sides must merge at least two components of G_d , and thus use at least two edges of length at least d. It follows that $OPT \geq 2d$.

We now proceed by finding a $(1+\varepsilon)$ -approximate TSP tour T of $P \cup \{c_1, c_2\}$ by the known PTAS [1,7]. Starting from c_1 and going along T either clockwise or counter-clockwise, we can find n other vertices before reaching c_2 . Label the tour in this order as $(x_1, x_2, \ldots, x_{2n+2}, x_1)$ where $x_1 = c_1$. Then let $C_1 = (x_1, x_2, \ldots, x_n, x_{n+1}, x_1)$ and $C_2 = (x_{n+2}, x_{n+3}, \ldots, x_{2n+1}, x_{2n+2}, x_{n+2})$. Clearly C_1 and C_2 form a solution, whose cost is $\max\{w(C_1), w(C_2)\} \leq w(T)$, where we used the triangle-inequality to relate $w(C_1)$ and $w(C_2)$ to w(T).

Now we relate w(T) to the optimum cost. Let T^* be the optimal TSP tour of $P \cup \{c_1, c_2\}$.

$$\frac{w(T)}{(1+\varepsilon)} \le w(T^*)$$
 (*T* is obtained by PTAS for TSP)
$$\le w(T_1) + w(T_2) + 2d$$

$$\le 2 \max\{w(T_1), w(T_2)\} + 2d$$
 (max,+ inequality)
$$\le 2OPT + OPT$$
 (by optimality of T_1, T_2 and $OPT \ge 2d$)
$$= 3OPT.$$

Here, the second inequality follows by observing that the optimal 2-TSP solution T_1, T_2 can be transformed into a TSP tour of $P \cup \{c_1, c_2\}$ (possibly worse than the optimal T^*) by adding a double-edge of length d.

It follows that, by returning C_1 and C_2 , we have a $(3 + \varepsilon')$ -approximation (for $\varepsilon' = 3\varepsilon$), with a running time that is dominated by the PTAS for TSP, and thus, polynomial, for every finite $\varepsilon' > 0$.

We can improve the guarantee at the expense of the running time. Assume that we know the correct value of d and constructed the graph G_d as discussed above. Fix some error parameter $\varepsilon > 0$ and let $k = \lceil 1/\varepsilon \rceil$. We have two cases.

- (I) If at least one of $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$ is formed by merging at most k components of G_d . In this case we can "guess" this set of components by going through at most $\sum_{i=1}^k \binom{n}{i} \in O(n^k) \subseteq n^{O(1/\varepsilon)}$ possibilities. Once we identify the correct set of components, we have determined $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$, and we can compute a $(1 + \varepsilon)$ -approximate solution for both by the known PTAS. Our overall approximation ratio is $(1 + \varepsilon)$.
- (II) If both $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$ are formed by merging more than k components of G_d , then both T_1 and T_2 include at least k edges not in G_d . We obtain that $OPT \geq kd$. This strengthens the fourth inequality above, yielding $2 \max\{w(T_1), w(T_2)\} + 2d \leq 2OPT + (2/k)OPT \leq (2 + 2\varepsilon)OPT$.

Thus, the approximation ratio of the solution C_1, C_2 described before is at most $(1 + \varepsilon)(2 + 2\varepsilon)$, yielding a $(2 + \varepsilon')$ -approximation, for every $\varepsilon' > 0$, by appropriately choosing $\varepsilon \in \Theta(\varepsilon')$.

In all cases, we obtain the desired approximation ratio, with the running time dominated by the PTAS for TSP. In summary, we obtain the following.

Theorem 3. Two-TSP can be approximated with a factor- $(2+\varepsilon)$ approximation algorithm which runs in time $n^{O(1/\varepsilon)}$, is thus polynomial in n for every finite $\varepsilon > 0$.

4.2 A 2.4268-Approximation for Two-MST

Given a set P of 2n points in the plane and two sites c_1 and c_2 , our goal is to partition P into two sets P_1 and P_2 each of size n such that the maximum weight of MST's for $P_1 \cup \{c_1\}$ and $P_2 \cup \{c_2\}$ is minimized.

We proceed similarly as in the case of Two-TSP in Section 4.1. Consider an (unknown) optimal partition $P_1 \cup P_2$ of P with minimum spanning trees T_1 of $P_1 \cup \{c_1\}$ and T_2 of $P_2 \cup \{c_2\}$, and let $d = \min\{d(x,y)\}$ over $x \in P_1 \cup \{c_1\}$ and $y \in P_2 \cup \{c_2\}$. Again we "guess" d (by going through all $O(n^2)$ possible values), and for a given d we construct the graph G_d as in Section 4.1.

If c_1 and c_2 are connected in G_d , or if some component of G_d has more than n+1 vertices, then our value of d must be wrong. If the component of c_1 or c_2 in G_d has exactly n+1 vertices, then it must exactly be the set $P_1 \cup \{c_1\}$ or $P_2 \cup \{c_2\}$ (assuming our guessed d is correct). Having identified the optimal partition, we can obtain an optimal solution directly by any MST algorithm (say Kruskal's).

Assume thus that the components of G_d that contain c_1 and c_2 both have fewer than n+1 vertices. Then, in the optimal 2-MST solution both both sides must merge at least two components of G_d , and thus use at least one edge of length at least d. It follows that $OPT \geq d$.

We then consider, for the purpose of the analysis, an optimal MST T of $P \cup \{c_1, c_2\}$ with cost w(T). For an arbitrary partitioning of $P_1 \cup P_2$ of P into n vertices each, we find two MSTs C_1 of $P_1 \cup \{c_1\}$ and C_2 of $P_2 \cup \{c_2\}$ (again, by Kruskal's algorithm). We have the bound $\max\{w(C_1), w(C_2)\} \leq 1.2134 \cdot w(T)$. The inequality holds because T is a Steiner tree of both parts (viewing the points of the other part as Steiner points), and we have the bound of Chung and Graham [2] that the MST-weight of a point set is at most ρ times the minimum Steiner tree weight, where $\rho \leq 1.2134$.

Now we relate w(T) to the optimum cost.

```
\begin{split} w(T) &\leq w(T_1) + w(T_2) + d \\ &\leq 2 \max\{w(T_1), w(T_2)\} + d \qquad (\text{max,+ inequality}) \\ &\leq 2OPT + OPT \qquad (\text{by optimality of } T_1, T_2 \text{ and } OPT \geq d) \\ &= 3OPT. \end{split}
```

Here, the first inequality follows by observing that the optimal 2-MST solution T_1, T_2 can be transformed into a spanning tree of $P \cup \{c_1, c_2\}$ (possibly worse than the optimal w(T)), by adding an edge of length d. It follows that by returning C_1 and C_2 we obtain a 3ρ -approximation. We can improve the approximation ratio by the same win-win strategy as in Section 4.1. We either identify at most $k = \lceil 1/\varepsilon \rceil$ components of G_d that form one side of the optimal solution and compute it directly (I), or we can strengthen the inequality $OPT \geq d$ to $OPT \geq kd$ which yields a $(2 + \varepsilon)\rho$ -approximation (I).

By choosing an appropriate finite $\varepsilon > 0$ we can get arbitrarily close to the factor obtained by rounding 2ρ up to 2.4268. The running time is dominated

by the $n^{O(1/\varepsilon)}$ cost of finding the set of components forming one side of the partition. We thus obtain the following.

Theorem 4. Two-MST can be approximated with a factor-2.4268 approximation algorithm which runs in time polynomial in n.

Remark. The fact that the distances are euclidean is used in the approximation algorithms in only two places: (1) by the PTAS for TSP, and (2) for the MST/Steiner-ratio ρ . We can generalize both results to arbitrary metrics, with slightly worse approximation ratios, replacing (1) by a constant-factor approximation algorithm for metric TSP (say, Christofides' algorithm), and (2) by the appropriate ratio in the metric case.

In the next section, we present some polynomial-time solvable cases for Two-MST.

5 Polynomially-solvable Cases for Two-MST

5.1 The 1-dimensional case: all data points are on a line

First consider the 1-dimensional case where $P \cup \{c_1, c_2\} \subset R$, the set of real numbers. WLOG, assume that $x(c_1) \leq x(c_2)$. Let $P = \{p_1, \ldots, p_{2n}\}$ be sorted by x-coordinates. It can be easily shown that the optimal partition of P is $P_1 = \{p_1, \ldots, p_n\}$ and $P_2 = \{p_{n+1}, \ldots, p_{2n}\}$. Hence this version can be solved in $O(n \log n)$ time with sorting. And this is optimal as we need to return the two MST's which together give the sorted ordering of P.

5.2 Points on the X- and Y-axis and under the Manhattan distance

In this subsection, we study an interesting variation when the distance is Manhattan (L_1) and all the data points (including c_1 and c_2) are on the X- and Y-axis. We call this version the X+Y case, which we show to be solvable in polynomial time as follows.

The following definition hold for both L_1 and L_2 . The maximal segment of a tree T_i on an half-axis $H = \{(x,0) \mid x \geq 0\}$ (resp. $H = \{(0,x) \mid x \geq 0\}$) is a segment between the leftmost (resp. bottom-most) vertex of T in H and the rightmost (resp. top-most) vertex of T in H (if c_i is not on H); otherwise H contains at most two maximal segments: one is from the leftmost (resp. bottom-most) vertex to the vertex before c_i , and the second one is from the vertex after c_i to the rightmost (resp. top-most) vertex. (Similar definitions can be made for the half-axis along $-\infty$ directions.) We first prove the following lemma.

Lemma 1. When all the points in P and two sites c_1 and c_2 are on the X- and Y-axis, for 2-MST under the L_1 metric there is an optimal solution such that all the edges in the two MST's T_1 and T_2 are on the X-axis and Y-axis; moreover, the maximal segment of T_1 and T_2 on any half-axis are disjoint.

Proof. The first part of the proof goes as follows. Suppose in one of the MST's, say T_1 , one of the edge between $(x_i,0)$ and $(0,y_j)$ is through (x_i,y_j) . Then by the property of L_1 , we could connect $(x_i,0)$ to $(0,y_j)$ through the origin o=(0,0). The new T'_1 either has the same weight as T_1 (when both the segments between (0,0) and $(0,x_i)$, and between (0,0) and $(y_j,0)$ are not in T_1), or has a smaller weight as T_1 (when one of the segments between (0,0) and $(0,x_i)$, and between (0,0) and $(y_j,0)$ is already in T_1).

We now assume that the optimal solution of this X+Y instance for 2-MST under L_1 metric preserves this property that we have just proved. Note that if T_i is in the optimal solution of 2-MST, all the edges of T_i must be on the two axes; and if c_i is on one axis, say Y-axis, then the points of T_i on the Y-axis must form at most two maximal segments, with c_i in between them.

For the second part of the proof, suppose on the half-axis $(o, (+\infty, 0))$ of X-axis we have segments of points like $P' = \langle p_{1,1}, \cdots, p_{1,q}, p_{2,1}, \cdots, p_{2,r}, p_{1,q+1}, \cdots, p_{1,q+s} \rangle$, where $p_{1,i} \in T_1$ and $p_{2,j} \in T_2$; moreover, we can assume that c_1 and c_2 are out of these segments (if not, we just choose the overlapping segments not containing c_1 and c_2). Then we can obviously switch the points in the middle without increasing the weight of T_1 and T_2 as follows. If c_1 and c_2 are both to the left of $p_{1,1}$, we just assign the leftmost r points in P' to T_2 and the remaining ones to T_1 ; if c_1 and c_2 are both to the right of $p_{1,q+s}$, we just assign the rightmost r point in P' to T_2 and the remaining ones to T_1 . If c_1 is to the left of $p_{1,1}$ and c_2 is to the right of $p_{1,q+s}$, we just assign the rightmost r points in r0 to r1 and r2 and the remaining ones to r3. If r4 is to the right of r5 and r6 to r9 and the remaining ones to

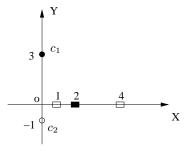


Fig. 4: An example of optimal solution for 2-MST under the L_1 distance on the half-axis $(o, (\infty, 0))$: in T_1 , $c_1 = (0, 3)$ takes the 2n points in the 2ε -interval centered at (2, 0); in T_2 , $c_2 = (0, -1)$ takes the two groups of n points in the 2ε -intervals centered at (1, 0) and (4, 0). Following Lemma 1, we could partition all the n points near (1, 0) and the first n points near (2, 0) to T_1 and the remaining points to T_2 , without increasing the maximum weight of T_1 and T_2 .

If we denote a continuous segment of points of P on the X-axis belonging to T_1 as A and a segment of points of P on the X-axis belonging to T_2 as B. The above lemma basically shows that in some optimal solution for 2-MST for this X+Y case, there is no pattern like A-B-A on any of the half-axis in the X- and Y-axis. Suppose there is an optimal solution with the A-B-A pattern: making $c_1 = (0,3)$ and $c_2 = (0,-1)$ and three group of points (points are all within an interval of length 2ε) around (2,0) (with size 2n), around (1,0) and (4,0) (each with size n). One optimal solution is for c_1 to take the 2n points near (2,0) and c_2 to take the remaining two groups of points (Fig. 4). The optimal solution value is $5+\varepsilon$. But we could easily switch all the points near (1,0) to T_1 and put the first half of n points near (2,0) to T_1 . The weight of T_2 is unchanged and the weight of T_1 is decreased by ε . We then have the following theorem.

Theorem 5. When all the points in P and two sites c_1 and c_2 are on the X-and Y-axis, 2-MST under the L_1 metric can be solved in $O(n^4)$ time.

Proof. Following Lemma 1, we can solve this problem in $O(n^4)$ time. We first sort the points of P on the X-axis into P_X and then we sort the points of P on the Y-axis into P_Y . Then we enumerate all possible way to cut P_X and P_Y into at most 2 groups in each of the 4 half-axis. The total number is $O(n^4)$. Then, fixing each combination of cuts on the 4 half-axes, we check if a feasible solution exists, and if so, we compute the two MST's (including c_1 and c_2 respectively) in O(1) time — for each group we only need to compute its two extreme points when computing an MST. Consequently, we can compute the optimal solution of the 2-MST problem when all the points are on the X- and Y-axis in $O(n^4)$ time.

5.3 Points on the X- and Y-axis and under the Euclidean distance

We now look at the X+Y case in this subsection by using the Euclidean distance. It turns out that the problem is much harder, as obviously not all the edges in an MST are along the X- and Y-axis. In fact, different from the L_1 case, on any half-axis even the interleaving A-B-A scenario is possible for 2-MST in L_2 (Fig. 7). However, we show that a pattern like A-B-A-B-A is not possible — assuming c_1 and c_2 are not on the same half-axis. Based on that, we can give a polynomial time algorithm in $O(n^{13})$ time as well. First, we show a lemma regarding a property of an MST for points on the X- and Y-axis.

Lemma 2. When all the points in a set Q are on the X- and Y-axis, in an MST of Q under the L_2 metric, there are at most two consecutive segments of points of Q on the X-axis (and respectively, Y-axis) not containing c_i .

Proof. In fact, we show a stronger statement: along any of the four half-axes not containing c_i , say $((0,0), (+\infty,0))$, there is at most one segment of points in the MST T. WLOG, we refer to Fig. 5, where the MST connects two segments of points through the edge (a,d) and (c,e). By triangle inequality, we could replace the edge (c,e) with (b,c). Then we would have a spanning tree with a smaller

weight, as |ce| > |oc| > |bc|. This contradicts the optimality of the assumed MST T.

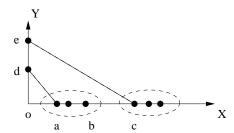


Fig. 5: Illustration for the proof of Lemma 2.

Note that the proof also implies that when computing the MST T, it all matters to identify the point closest to the origin o in each of the half-axis, if o is not in the input set P. We now explore more properties for 2-MST.

Lemma 3. For the 2-MST problem under the L_2 metric, given each half-axis, say $((0,0), (+\infty,0))$, except for the maximal segments connected with points on the Y-axis the optimal solution T_1 and T_2 must either partition the remaining points on the half-axis, possibly separated by $(c_i, if any)$ into two parts, or one of them takes all the points on it.

Proof. We focus on the half-axis $((0,0), (+\infty,0))$, and assume that the partition of points on this half-axis form five segments [a,b], [c,d], [e,g], [u,v] and [w,z], where [a,b] and [c,d] connect to some points/sites on the Y-axis, [e,g] and [w,z] belong to T_1 and [u,v] belongs to T_2 (Fig. 6 (I)). WLOG, assume that c_1 and c_2 are out of the interval [c,z]. In this case, similar to the proof of Lemma 1, we show that we can decrease the number of segments of T_1 and T_2 without changing the connection (a,h) and (c,i) and without increasing the maximum weight of them. This can be done by partitioning the points in the segments/groups to the right of the last connection to the points in the Y-axis (i.e., segments [e,g], [u,v] and [w,z] to the right of point c in Fig. 6 (I)) into two parts; more precisely, partition these points into two parts according to the position of c_1 and c_2 . In Fig. 6 (II), when c_1 and c_2 are out of the interval [c,z], then partition these points so that the leftmost |[u,v]| of them are merged with the segment [c,d] for T_1 and the remaining ones are merged with [w,z] for T_2 . It is obvious that our goal is achieved.

Similar arguments obviously hold for the points between c_1 and c_2 (when c_1 and c_2 are on the same half-axis).

Fig. 6 (III) shows that partition into two groups to the right of the segment containing c could happen, as long as the number of points in the rightmost three groups satisfy $n_2 > n_1$ and $n_2 > n_3$. This example cannot be further improved

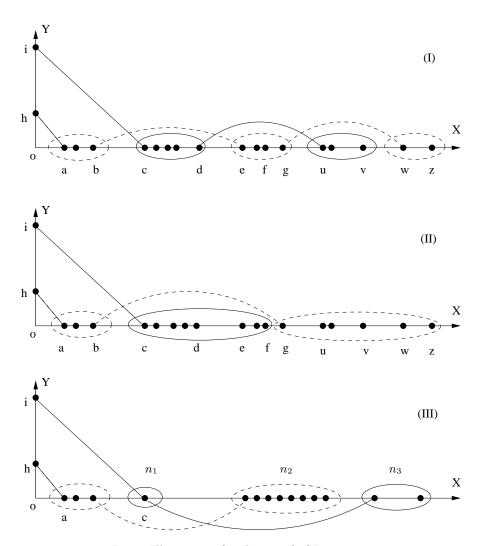


Fig. 6: Illustration for the proof of Lemma 3.

without changing the connection (i,c) as in the example we set $n_1 = 1, n_2 = 8$ and $n_3 = 2$. Note that the above lemma implies that, even excluding the segment bounded by c_1 and c_2 (when they are on the same half-axis), the pattern of A-B-A-B or B-A-B-A on any half-axis might still be possible, which enables us to design a polynomial-time algorithm. But we do not know yet if that pattern could really happen in real life. In Fig. 7, we present an example where we do have the pattern A-B-A on an half-axis.

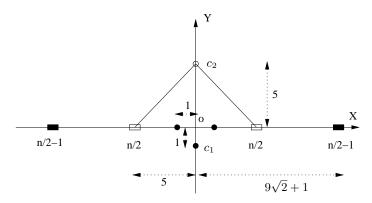


Fig. 7: An example of optimal solution for 2-MST under the L_2 distance. In the example, T_1 includes black points composed of two blocks of n/2-1 points each (located in a small 2ε -interval), plus two black points within distance 1 to the original o. They are all on the X-axis and together with $c_1 = (0, -1)$ we form T_1 , which has a weight of $10\sqrt{2} + 2\varepsilon$). T_2 is composed of two blocks of n/2 points on the X-axis (each within a 2ε -interval located at a distance 5 from the origin), which are grouped with $c_2 = (0, 5)$ to form T_2 . The weight of T_2 is also $10\sqrt{2} + 2\varepsilon$.

The algorithm for 2-MST for this X+Y case is then easy. First, ignore the case when c_1 and c_2 are on the same half-axis. We compute T_1 by at most 3-cutting the points and then selecting at most two segments along each of the 4 half-axes $((0,0),(+\infty,0)),((-\infty,0),(0,0)),((0,0),(0,+\infty))$, and $((0,0),(0,-\infty))$. This gives us $O((n^3)^4) = O(n^{12})$ number of partitions for T_1 . Then if c_1 and c_2 are on the same half-axis, by Lemma 3, we need one more cut to partition the points in between them. The total number of partitions for T_1 is $O(n^{13})$. T_2 will then take the remaining segments. Hence, all pairs of (T_1, T_2) can be enumerated in $O(n^{13})$ time. In an optimal solution such a set of at most 9 segments of points must exist, i,e., they cover exactly n points and c_1 . If we presort the points in the 4 half-axes, then this can be checked in O(1) time. Hence, T_1 can be computed in O(1) time when its segments are given. Then, given each set of at most 9 (complementary) segments, we can compute the MST of the remaining points as T_2 in O(1) time. This gives us the following theorem.

Theorem 6. When all the points in P and two sites c_1 and c_2 are on the X-and Y-axis, 2-MST under the L_2 metric can be solved in $O(n^{13})$ time.

6 Concluding Remarks

In this paper, we studied the 2-TSP and 2-MST problems as variations and generalizations of the 2-squirrel problem we start with. While several results have been obtained, there are still many open questions. The first question is whether we could improve the approximation factors for 2-TSP and 2-MST. The second question is for the X+Y case of 2-MST under the Euclidean distance; we suspect that the $O(n^{13})$ upper bound is not tight. There are possibly two ways to improve the bound: (1) if the pattern A-B-A-B on an half-axis (not containing c_i) can be shown to be impossible, then we only need at most two cuts on each of them, leading to a running time of $O(n^9)$; (2) even if the pattern A-B-A-B on an half-axis (not containing c_i) is really possible, they might not appear in each half-axis at the same time, then some improvement might still be possible.

Acknowledgments

Part of this research was performed when the first and last author visited University of Hyogo in late 2022. We also thank Hiro Ito for some insightful comments.

References

- S. Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. J. ACM, 45(5): 753-782, 1998.
- 2. F.R.K. Chung and R.L. Graham. A new lower bound for Euclidean Steiner minimal trees. *Annals. NY Academy of Sciences*, 440(1):328-346, 1985.
- 3. G. Even, N. Garg, J. Koenemann, R. Ravi and A. Sinha. Covering graphs using trees and stars. *Proc. APPROX/RANDOM'03*, pp. 24-35, 2003.
- B. Gamlath and V. Grinberg. Approximating star cover problems. Proc. AP-PROX/RANDOM'20, pp. 57:1-57:19, 2020.
- 5. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness, W.H.Freeman, 1979.
- R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pp. 85-103, Springer US, 1972.
- J.S.B. Mitchell, Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems. SIAM J. Comput., 28(4): 1298–1309, 1999.
- 8. D. Wojtczak. On strong NP-completeness of rational numbers. *Proc. CSR'18*, pp. 308-320, 2018.
- 9. W. Zhao and P. Zhang. Approximation to the Minimum Rooted Star Cover Problem. *Proc. TAMC'07*, pp. 670-679, 2007.