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Abstract. In this paper, we start with a variation of the star cover
problem called the Two-Squirrel problem. Given a set P of 2n points
in the plane, and two sites c1 and c2, compute two n-stars S1 and S2

centered at c1 and c2 respectively such that the maximum weight of
S1 and S2 is minimized. This problem is strongly NP-hard by a reduc-
tion from Equal-size Set-Partition with Rationals. Then we consider two
variations of the Two-Squirrel problem, namely the Two-MST and Two-
TSP problem, which are both NP-hard. The NP-hardness for the latter
is obvious while the former needs a non-trivial reduction from Equal-size
Set-Partition with Rationals. In terms of approximation algorithms, for
Two-MST and Two-TSP we give factor 2.4268 and 2+ε approximations
respectively. Finally, we also show some interesting polynomial-time solv-
able cases for Two-MST.

Keywords: Minimum star/tree cover · NP-hardness · Set-Partition ·

Approximation algorithms · Minimum spanning tree (MST) · TSP

1 Introduction

Imagine that two squirrels try to fetch and divide 2n nuts to their nests. Since
each time a squirrel can only carry a nut back, this naturally gives the following
problem: they should travel along the edges of an n-star, centered at the cor-
responding nest, such that each leaf (e.g., nut) is visited exactly once (in and
out) and the maximum distance they visit should be minimized (assuming that
they travel at the same speed, there is no better way to enforce the fair division
under such a circumstance). See Figure 1 for an illustration.

A star S is a tree where all vertices are leaves except one (which is called
the center of the star). An n-star is a star with n leaf nodes. When the edges
in S carry weights, the weight of S is the sum of weights of all the edges in S.
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A
B

Fig. 1: Two squirrels A and B try to fetch and divide 2n nuts.

Given two points p, q in the plane, with p = (xp, yp) and q = (xq, yq), we define

the Euclidean distance between p, q as d(p, q) = |pq| =
√

(xp − xq)2 + (yp − yq)2

and the L1 or Manhattan distance between them is defined as d1(p, q) = |xp −
xq|+ |yp − yq|.

Formally, the Two-Squirrel problem can be defined as: Given a set P of 2n
points in the plane and two extra point sites c1 and c2, compute two n-stars
S1 and S2 centered at c1 and c2 respectively such that each point pj ∈ P is a
leaf in exactly one of S1 and S2; moreover, the maximum weight of S1 and S2

is minimized. Here the weight of an edge (ci, pj) in Si is w(ci, pj) = d(ci, pj)
for i = 1, 2. One can certainly consider a variation of the two-squirrel problem
where the points are given as pairs (p2i−1, p2i) for i = 1, ..., n, and the problem
is to split all the pairs (i.e., one to c1 and the other to c2) such that maximum
weight of the two resulting stars is minimized. We call this version Dichotomy
Two-Squirrel.

A more general (and probably more interesting) version of the problem is
when the two squirrels only need to split the 2n nuts and each could travel along
a Minimum Spanning Tree (MST) of the n points representing the locations
of the corresponding nuts, which we call the Two-MST problem: Compute a
partition of P into n points each, P1 and P2, such that the maximum weight
of the MST of P1 ∪ {c1} and P2 ∪ {c2}, i.e., max{w(P1 ∪ {c1}), w(P2 ∪ {c2})},
is minimized. Similarly, we could replace MST with TSP to have the Two-TSP
problem.

Covering a (weighted) graph with stars or trees (to minimize the maximum
weight of them) is a well-known NP-hard problem in combinatorial optimiza-
tion [3], for which constant factor approximation is known. Recently, bi-criteria
approximations are also reported [4]. In the past, a more restricted version was
also investigated on graphs [9]. Our Two-Squirrel problem can be considered a
special geometric star cover problem where the two stars are disjoint though
are of the same cardinality, and the objective function is also to minimize the
maximum weight of them.

It turns out that, when the coordinates of points are rationals, both Two-
Squirrel and Dichotomy Two-Squirrel are strongly NP-hard (under both the
Euclidean and L1 metric, though we focus only on the Euclidean case in this pa-
per). The proofs follow directly from two variations of the famous Set-Partition
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problem [5, 6], namely, Equal-Size Set-Partition with Rationals and Dichotomy
Set-Partition with Rationals, which are both strongly NP-hard with the recent
result by Wojtczak [8]. We then show that Equal-size Set-Partition with Ra-
tionals can be reduced to Two-MST in polynomial time, which indicates that
Two-MST is NP-hard. (Note that in this proof, the constructed points have real
coordinates.) On the other hand, Two-TSP is obviously NP-hard as the TSP
problem is NP-hard.

As for approximation algorithms, both Two-Squirrel and Dichotomy Two-
Squirrel admit a FPTAS (note that this does not contradict the known result
that a strongly NP-hard problem with an integral objective function cannot
be approximated with a FPTAS unless P=NP, simply because our objective
functions are not integral). This can be done by first designing a polynomial-time
dynamic programming algorithm through scaling and rounding the distances to
integers, obtaining the corresponding optimal solutions, and then tracing back
to obtain the approximate solutions. The approximation algorithm for Two-
MST is more tricky; in fact, with a known lower bound by Chung and Graham
related to the famous Steiner Ratio Conjecture [2], we show that a factor 2.4268
approximation can be obtained. Using a similar method, we show that Two-TSP
can be approximated with a factor of 2 + ε.

In the end, we show two interesting polynomial-time solvable cases: when all
the points in P and the two sites are on the X- and Y-axis, the problems are
polynomially solvable under both the L1 and L2 distances. The running times
are O(n4) and O(n13) respectively.

The paper is organized as follows. In Section 2, we give some necessary defini-
tions. In Section 3, we present our NP-hardness result for the Two-MST problem.
In Section 4 we present the approximation algorithms for Two-TSP and Two-
MST. In Section 5, we show the special polynomial-time solvable cases. And in
Section 6 we conclude the paper.

2 Preliminaries

In this section, we first define Equal-size Set-Partition for Rationals and Di-
chotomy Set-Partition for Rationals which are generalizations of Set-Partition
[5, 6].

In Dichotomy Set-Partition with Rationals, we are given a set E of 2n positive
rationals numbers (rationals, for short) with E = E′

1 ∪ E′
2 ∪ · · ·E′

n such that
E′

i = {ai,1, ai,2} is a 2-set (or, E′
i = (ai,1, ai,2), i.e., as a pair) and the problem

is to decide whether E can be partitioned into E1 and E2 such that every two
elements in E′

i is partitioned into E1 and E2 (i.e., one in E1 and the other in E2

— clearly |E1| = |E2| = n) and
∑

a∈E1
a =

∑

b∈E2
b. (Equal-size Set-Partition

with Rationals is simply a special case of Dichotomy Set-Partition with Rationals
where E is given as a set of 2n rationals, i.e., E = {a1, a2, · · · , a2n} and E′

i’s are
not given.)

With integer inputs, both Dichotomy Set-Partition and Equal-size Set-Partition,
like their predecessor Set-Partition, can be shown to be weakly NP-complete. Re-
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cently, Wojtczak proved that even with rational inputs, Set-Partition is strongly
NP-complete [8]. In fact, the proof by Wojtczak implied that Dichotomy Set-
Partition and Equal-size Set-Partition are both strongly NP-complete — because
in this reduction from a special 3-SAT each pair xi and x̄i are associated with
two unique rational numbers which must be split in two parts. So we re-state
this theorem by Wojtczak.

Theorem 1. Equal-size Set-Partition with Rationals and Dichotomy Set-Partition
with Rationals are both strongly NP-complete.

It is straightforward to reduce Equal-size Set-Partition with Rationals to
Two-Squirrel (with rational coordinates) and Dichotomy Set-Partition with Ra-
tionals to Dichotomy Two-Squirrel (with rational coordinates), as each point is
directly connected to either c1 or c2. Hence, both Two-Squirrel and Dichotomy
Two-Squirrel are strongly NP-hard when the coordinates of the input points are
rational.

Coming to Two-MST, the story is quite different. Since the structure of an
MST is not fixed (i.e., even if we know that two points u, v ∈ P belong to T1, the
MST of P1 ∪ {c1}, we do not know how u, v are connected before T1 is actually
computed). Nonetheless, we show in the next section that Two-MST is NP-hard.

3 NP-hardness for Two-MST

In this section, we prove that the Two-MST problem (2-MST for short), is
NP-hard. (Our construction requires that the coordinates of the points are real
numbers.) Recall that in the 2-MST problem, one is given a set P of 2n points in
the plane, together with two point sites c1 and c2, the objective is to compute two
MST T1 and T2 each containing n points in P (and c1 and c2 respectively) such
that the maximum weight of T1 and T2, max{w(T1), w(T2}, is minimized. Here
the weight of any edge (pi, pj) or (pi, ck) in Tk, k = 1..2, is the Euclidean distance
between the two corresponding nodes. We reduce Equal-size Set-Partition for
Rationals [8] to 2-MST in the following. Note that in the proof by Wojtczak [8],
a set S of 2n rationals, with a total sum of 2n, were constructed such that the
only partition is to partition them into two equal-size sets with n rationals, each
having a sum of value n.

Theorem 2. Two-MST is NP-hard.

Proof. We reduce Equal-size Set-Partition with Rationals to Two-MST. Note
that, given E = {a1, a2, · · · , a2n} where each ai (i = 1..2n) is a rational number
and

∑

i ai = 2t, for Set-Partition with Rationals we need to partition E into two
sets E1 and E2 such that |E1| = |E2| and the rationals in E1 and E2 sum the
same, i.e., t =

∑

a∈E1
a =

∑

b∈E2
b. We construct 10n+4 points in P as well as 2

point sites c1 and c2. We first show our ideas, then follow with the construction
of these points with coordinates — mostly along the X-axis.

The building block of each ai is a rectangle Bi = (bi,1, bi,2, bi,4, bi,3) in clock-
wise order with bi,1 being the top-left corner point; in addition, pi (on the X-axis)
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is the center of this rectangle Bi (see Fig.2 (II)). In other words, each ai will be
transformed into a group of 5 points. The horizontal edge length of Bi is 24ai
and the height of Bi is 10ai; hence the distance from the center pi to any of the
corner point is 13ai. The crucial point is that, at Bi, if T1 and T2 start at bi,1
and bi,3 respectively, then one of them would include pi and ending at bi,2 and
bi,4 respectively (or vice versa). As a matter of fact, the difference of the parts
of T1 and T2 spanning Bi∪{pi} is 2×13ai−2×12ai = 2ai. We place the Bi’s in
a way such that the right edge of Bi and the left edge of Bi+1 form an isosceles
trapezoid Ti, symmetric along the X-axis, such that the non-vertical edges have
a length of 2t (note that 2t > ai, 2t > ai+1). As a matter of fact, going from left
to right, if T1 (resp. T2) includes bi,2 (resp. bi,4), then the shortest paths from
them to reach Bi+1 are < bi,2, bi+1,1 > and < bi,4, bi+1,3 > respectively, which
both have a length of 2t.

(I)

(II)

Y=0

T0
T1 T2

p1

B1

p2

B2

Bi

bi,1 bi,2

bi,3 bi,4

pi
10ai

24ai

c1

c2 2t2t2t

Fig. 2: Illustration for the reduction from Equal-size Set-Partition with Rationals
to 2-MST, the left part (I). Block Bi, note that the distance from the center pi
to any of the 4 corners is 13ai (II).

At the end of B2n, we construct four points b2n+1 = b2n+2 (on the X-
axis), q and r. They form a regular triangle with d(b2n+1, q) = d(b2n+1, r) =
d(q, r) = 4nt. As the distance d(q, r) is so large (compared with the opti-
mal solution for 2-MST), the optimal solution must split them in a way such
that {b2n+1, q} ∈ T1 and {b2n+2, r} ∈ T2 or vice versa. Moreover, we can set
d(b2n,3, b2n+1) = d(b2n,4, b2n+1) = 4nt; i.e., < b2n,3, b2n+1, b2n,4 > form an isoce-
les triangle with long edge length 4nt (or we can say < b2n,3, b2n+1, b2n+2, b2n,4 >
form a degenerate isoceles trapezoid T2n with edge length 4nt. Obviously, in the
optimal solution b2n,3 and b2n,4 must be split into T1 and T2 respectively, or vice
versa.

We briefly discuss the coordinates of the points constructed; in fact, they
could be constructed in an incremental way. First set c1 = (0, 10a1), c2 =
(0,−10a1), and construct the group of 5 points as the vertices and center of
B1, with b1,1 = (2t, 10a1), b1,2 = (2t + 24a1, 10a1), b1,3 = (2t,−10a1), b1,4 =
(2t+24a1,−10a1) and p1 = (2t+12a1, 0). Then we construct Ti and Bi+1∪{pi}
for i = 1 to 2n incrementally. WLOG, let ai ≤ ai+1 and the coordinates of
bi,2 and bi,4 be bi,2 = (xi, 10ai) and bi,4 = (xi,−10ai) respectively. Then the
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coordinates of points in Bi+1 ∪ {pi+1} are

bi+1,1 = (xi +
√

(2t)2 − (10(ai+1 − ai))2, 10ai+1),

,

bi+1,2 = (xi +
√

(2t)2 − (10(ai+1 − ai))2 + 24ai+1, 10ai+1),

bi+1,3 = (xi +
√

(2t)2 − (10(ai+1 − ai))2,−10ai+1),

bi+1,4 = (xi +
√

(2t)2 − (10(ai+1 − ai))2 + 24ai+1,−10ai+1)

and

pi+1 = (xi +
√

(2t)2 − (10(ai+1 − ai))2 + 12ai+1, 0).

The coordinates for b2n+1 and b2n+2 are (x2n +
√

(4nt)2 − (10a2n)2, 0), and the

coordinated of q and r are q = (x2n +
√

(4nt)2 − (10a2n)2 + 2
√
3nt, 2nt) and

r = (x2n +
√

(4nt)2 − (10a2n)2 + 2
√
3nt,−2nt). Note that to the right of B1,

the points are virtually all having real coordinates. See Fig 2. (I) and Fig. 3 for
the construction.

We show next that Equal-size Set-Partition with Rationals has a solution
iff the 2-MST instance P ∪ {c1, c2} admits a solution with optimal weight of
(12n+ 2)t.

“If part”: If E can be partitioned into E1 and E2 such that
∑

a∈E1
a =

∑

b∈E2
b = t, we show how to construct two MST’s as follows. Up to B2n, we

include all the points above the X-axis to T1 and all the points below the X-axis
to T2. For pi’s, if ai ∈ E1 then we include pi in T1, if ai ∈ E2 then we include
pi in T2 (each will incur a cost of 2ai). We then include b2n+1 and b2n+2 (and q
and r) to T1 and T2 respectively. Obviously we have |T1| = |T2| = 5n + 3, and
the weight of them are both (12n+ 2)t.

“Only-if part”: Now suppose that points in P are partitioned into P1 and P2

such that the MST’s of P1 ∪ {c1} and P2 ∪ {c2} are T1 and T2 respectively, and
the maximum weight of T1 and T2 is (12n+2)t. Following the previous argument,
we must split q and r (hence also b2n+1 and b2n+2, and subsequently b2n,2 and
b2n,4) into T1 and T2 to have a weight less than 16nt. Similarly, we need to split
b1,1 and b1,3 into T1 and T2 as otherwise we would have a solution larger than
(12n+ 2)t — since d(c1, b1,3) > d(c1, b1,1) = 2t and d(c2, b1,1) > d(c2, b1,3) = 2t.
Likewise, not splitting b1,1 and b1,3 into T1 and T2, e.g., including both of them
in T1 or T2, would incur a cost of 2t+ 10a1 > 2t, which would lead to a higher
total cost.

We now show with induction that the current optimal solution (say T1) for
points up to Bi is 2it (the major cost) plus the cost of including some center
pj ’s (1 ≤ j ≤ i); moreover, T1 must include bi,2, T2 must include bi,4 and the
cost of the other MST T2 is minimized. The basis is obvious: since T1 must
include b1,1 and T2 must include b1,3, to reach the end of B1 (i.e., b1,2 and b1,4),
T1 needs to include b1,2 and p1 to maintain the optimality of a local solution
(2t+26a1), and T2 must include b1,4 to have a cost of 2t+24a1. Note that if we
let T1 include p1 and b1,4, and T2 include b1,2, although the cost of T1 remains
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the same (2t+ 26a1), the cost of T2 becomes 2t+ 26a1, which is not minimized
anymore.

Now assuming the inductive hypothesis holds for i, let us consider Bi+1. In
very much the same way, let the local optimal solution (say T1) end at bi,2, and
T2 end at bi,4, with both the major cost being 2it. Clearly, in covering points in
Bi+1, T1 (resp, T2) should not include bi+1,3 (resp. bi+1,1) as that will increase the
major cost to more than 2(i+1)t (since in Ti, d(bi,2, bi+1,3) > d(bi,2, bi+1,1) = 2t
and d(bi,4, bi+1,1) > d(bi,4, bi+1,3) = 2t). Then, for the same argument as in
the basis, if T1 includes bi+1,4 and T2 includes bi+1,2 then the cost of T2 is not
minimized.

At this point, it can be seen that the optimal solution boils down to split pi’s
to T1 and T2. As we have 2n pi’s and the splitting of each pi would incur a cost
of 2ai, by symmetry, the optimal solution must split them into T1 and T2 such
that each would incur an additional cost of 2t (note that

∑

1≤i≤2n ai = 2t), for a
total cost of 2(2n)t+2t+(4nt+4nt) = (12n+2)t. The splitting of these ai’s in
T1 and T2 would return us a solution for Equal-size Set-Partition with Rationals,
i.e., if ai is in T1 then E1 ← E1 ∪ {ai}, and if ai is in T2 then E2 ← E2 ∪ {ai};
moreover

∑

a∈E1
a =

∑

b∈E2
b = t.

This reduction obviously takes linear time, hence the theorem is proven. ⊓⊔

We comment that with this proof, a variation of 2-MST, e.g., even if c1 and
c2 are not given in advance, remains NP-hard. Also, with a minor modification
we could show that Two-MST is NP-hard under the L1 distance as well. In
addition, Two-TSP is obviously NP-hard: given a set of points P and suppose
we want to compute a TSP of P . We just create another copy of P , P ′ and
translate P ′ to be far away from P (say, by a distance of 10 times the diameter
of P ), then fix a point p in P as c1 and the corresponding copy p′ in P ′ as c2.
Then the optimal solution for TSP for P is exactly the same as the Two-TSP
solution for P ∪ P ′ ∪ {c1, c2}.

In the next section, we present constant-factor approximations for Two-MST
and Two-TSP.

T2n−1 T2n

p2n

B2n

10a2n
b2n+1b2n+2

q

r

2t 4nt

4nt

4nt

Fig. 3: Illustration for the reduction from Equal-size Set-Partition with Rationals
to 2-MST, the right part.
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4 Constant-factor Approximations for Two-TSP and

Two-MST

Note that, when the coordinates of points are rational, both Two-Squirrel and
Dichotomy Two-Squirrel admit a FPTAS. This can be done, as suggested by Wo-
jtczak [8] for the corresponding counterparts of Set-Partition (with rationals),
by first designing a polynomial-time dynamic programming algorithm through
scaling and rounding the distances to integers, obtaining the corresponding op-
timal solutions, and then tracing back to obtain the approximate solutions. This
method does not work for 2-TSP and 2-MST, and in this section we design
constant-factor approximations for the two problems separately.

4.1 A (2 + ε)-Approximation for Two-TSP

Recall that we are given a set P of 2n points in the plane, and two sites c1 and
c2. Our goal is to partition P into two sets P1 and P2 each of size n and find
TSP tours of P1 ∪ {c1} and P2 ∪ {c2} so that the maximum of the two tours is
minimized.

Consider an (unknown) optimal partition P1 ∪ P2 of P with optimal TSP
tours T1 of P1 ∪{c1} and T2 of P2 ∪{c2}. Denote the optimum value by OPT =
max{w(T1), w(T2)}. Let d = min{d(x, y)} over x ∈ P1 ∪ {c1} and y ∈ P2 ∪ {c2}.
In words, d is the smallest distance of a pair of points from different sides of the
optimal partition.

Even though d is unknown, we can “guess it” by going through all the pos-
sible values, and taking the one that leads to the best solution. As there are
at most

(

2n+2
2

)

∈ O(n2) distances to consider, the overhead for doing this is a
multiplicative factor of O(n2) in the running time. For a given value of d, we
construct the graph Gd with vertex set P ∪ {c1, c2} and edge set {{x, y} | x, y ∈
P ∪ {c1, c2} and d(x, y) < d}. In words, Gd has edges between pairs of points
that are at distance strictly less than d.

Notice that if c1 and c2 are in the same component of Gd, then our guess for
d is wrong and the true value of d must be smaller. Similarly, if some component
of Gd has more than n+1 vertices, then our value of d must be wrong. (In both
cases, we would have an edge between P1 ∪ {c1} and P2 ∪ {c2} of length less
than d, contradicting the definition of d.) Constructing Gd and verifying both
conditions (by simple traversal) takes O(n2) time.

If the component of c1 or c2 in Gd has exactly n + 1 vertices, then it must
exactly be the set P1 ∪{c1} or P2 ∪{c2} (assuming our value for d is the correct
one). Having identified the optimal partition, we can obtain a (1+ε)-approximate
solution directly, using the known PTAS for TSP [1, 7] to compute TSP tours of
both sides of the partition.

Assume thus that the components of Gd that contain c1 and c2 both have
fewer than n+ 1 vertices. Then, in the optimal 2-TSP solution both sides must
merge at least two components of Gd, and thus use at least two edges of length
at least d. It follows that OPT ≥ 2d.
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We now proceed by finding a (1+ε)-approximate TSP tour T of P ∪{c1, c2}
by the known PTAS [1, 7]. Starting from c1 and going along T either clock-
wise or counter-clockwise, we can find n other vertices before reaching c2. La-
bel the tour in this order as (x1, x2, . . . , x2n+2, x1) where x1 = c1. Then let
C1 = (x1, x2, . . . , xn, xn+1, x1) and C2 = (xn+2, xn+3, . . . , x2n+1, x2n+2, xn+2).
Clearly C1 and C2 form a solution, whose cost is max{w(C1), w(C2)} ≤ w(T ),
where we used the triangle-inequality to relate w(C1) and w(C2) to w(T ).

Now we relate w(T ) to the optimum cost. Let T ∗ be the optimal TSP tour
of P ∪ {c1, c2}.

w(T )

(1 + ε)
≤ w(T ∗) (T is obtained by PTAS for TSP)

≤ w(T1) + w(T2) + 2d

≤ 2max{w(T1), w(T2)}+ 2d (max,+ inequality)

≤ 2OPT +OPT (by optimality of T1, T2 and OPT ≥ 2d)

= 3OPT.

Here, the second inequality follows by observing that the optimal 2-TSP
solution T1, T2 can be transformed into a TSP tour of P ∪ {c1, c2} (possibly
worse than the optimal T ∗) by adding a double-edge of length d.

It follows that, by returning C1 and C2, we have a (3 + ε′)-approximation
(for ε′ = 3ε), with a running time that is dominated by the PTAS for TSP, and
thus, polynomial, for every finite ε′ > 0.

We can improve the guarantee at the expense of the running time. Assume
that we know the correct value of d and constructed the graph Gd as discussed
above. Fix some error parameter ε > 0 and let k = ⌈1/ε⌉. We have two cases.

(I) If at least one of P1 ∪ {c1} and P2 ∪ {c2} is formed by merging at most k
components of Gd. In this case we can “guess” this set of components by going
through at most

∑k
i=1

(

n
i

)

∈ O(nk) ⊆ nO(1/ε) possibilities. Once we identify the
correct set of components, we have determined P1 ∪ {c1} and P2 ∪ {c2}, and we
can compute a (1 + ε)-approximate solution for both by the known PTAS. Our
overall approximation ratio is (1 + ε).

(II) If both P1 ∪ {c1} and P2 ∪ {c2} are formed by merging more than k
components of Gd, then both T1 and T2 include at least k edges not in Gd. We
obtain that OPT ≥ kd. This strengthens the fourth inequality above, yielding
2max{w(T1), w(T2)}+ 2d ≤ 2OPT + (2/k)OPT ≤ (2 + 2ε)OPT .

Thus, the approximation ratio of the solution C1, C2 described before is at
most (1 + ε)(2 + 2ε), yielding a (2 + ε′)-approximation, for every ε′ > 0, by
appropriately choosing ε ∈ Θ(ε′).

In all cases, we obtain the desired approximation ratio, with the running time
dominated by the PTAS for TSP. In summary, we obtain the following.

Theorem 3. Two-TSP can be approximated with a factor-(2+ε) approximation
algorithm which runs in time nO(1/ε), is thus polynomial in n for every finite
ε > 0.
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4.2 A 2.4268-Approximation for Two-MST

Given a set P of 2n points in the plane and two sites c1 and c2, our goal is to
partition P into two sets P1 and P2 each of size n such that the maximum weight
of MST’s for P1 ∪ {c1} and P2 ∪ {c2} is minimized.

We proceed similarly as in the case of Two-TSP in Section 4.1. Consider an
(unknown) optimal partition P1 ∪ P2 of P with minimum spanning trees T1 of
P1 ∪ {c1} and T2 of P2 ∪ {c2}, and let d = min{d(x, y)} over x ∈ P1 ∪ {c1} and
y ∈ P2 ∪ {c2}. Again we “guess” d (by going through all O(n2) possible values),
and for a given d we construct the graph Gd as in Section 4.1.

If c1 and c2 are connected in Gd, or if some component of Gd has more than
n + 1 vertices, then our value of d must be wrong. If the component of c1 or
c2 in Gd has exactly n + 1 vertices, then it must exactly be the set P1 ∪ {c1}
or P2 ∪ {c2} (assuming our guessed d is correct). Having identified the optimal
partition, we can obtain an optimal solution directly by any MST algorithm (say
Kruskal’s).

Assume thus that the components of Gd that contain c1 and c2 both have
fewer than n+ 1 vertices. Then, in the optimal 2-MST solution both both sides
must merge at least two components of Gd, and thus use at least one edge of
length at least d. It follows that OPT ≥ d.

We then consider, for the purpose of the analysis, an optimal MST T of
P ∪ {c1, c2} with cost w(T ). For an arbitrary partitioning of P1 ∪P2 of P into n
vertices each, we find two MSTs C1 of P1 ∪ {c1} and C2 of P2 ∪ {c2} (again, by
Kruskal’s algorithm). We have the bound max{w(C1), w(C2)} ≤ 1.2134 · w(T ).
The inequality holds because T is a Steiner tree of both parts (viewing the
points of the other part as Steiner points), and we have the bound of Chung and
Graham [2] that the MST-weight of a point set is at most ρ times the minimum
Steiner tree weight, where ρ ≤ 1.2134.

Now we relate w(T ) to the optimum cost.

w(T ) ≤ w(T1) + w(T2) + d

≤ 2max{w(T1), w(T2)}+ d (max,+ inequality)

≤ 2OPT +OPT (by optimality of T1, T2 and OPT ≥ d)

= 3OPT.

Here, the first inequality follows by observing that the optimal 2-MST so-
lution T1, T2 can be transformed into a spanning tree of P ∪ {c1, c2} (possibly
worse than the optimal w(T )), by adding an edge of length d. It follows that by
returning C1 and C2 we obtain a 3ρ-approximation. We can improve the approx-
imation ratio by the same win-win strategy as in Section 4.1. We either identify
at most k = ⌈1/ε⌉ components of Gd that form one side of the optimal solution
and compute it directly (I), or we can strengthen the inequality OPT ≥ d to
OPT ≥ kd which yields a (2 + ε)ρ-approximation (I).

By choosing an appropriate finite ε > 0 we can get arbitrarily close to the
factor obtained by rounding 2ρ up to 2.4268. The running time is dominated
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by the nO(1/ε) cost of finding the set of components forming one side of the
partition. We thus obtain the following.

Theorem 4. Two-MST can be approximated with a factor-2.4268 approxima-
tion algorithm which runs in time polynomial in n.

Remark. The fact that the distances are euclidean is used in the approxima-
tion algorithms in only two places: (1) by the PTAS for TSP, and (2) for the
MST/Steiner-ratio ρ. We can generalize both results to arbitrary metrics, with
slightly worse approximation ratios, replacing (1) by a constant-factor approxi-
mation algorithm for metric TSP (say, Christofides’ algorithm), and (2) by the
appropriate ratio in the metric case.

In the next section, we present some polynomial-time solvable cases for Two-
MST.

5 Polynomially-solvable Cases for Two-MST

5.1 The 1-dimensional case: all data points are on a line

First consider the 1-dimensional case where P ∪ {c1, c2} ⊂ R, the set of real
numbers. WLOG, assume that x(c1) ≤ x(c2). Let P = {p1, . . . , p2n} be sorted
by x-coordinates. It can be easily shown that the optimal partition of P is
P1 = {p1, . . . , pn} and P2 = {pn+1, . . . , p2n}. Hence this version can be solved in
O(n log n) time with sorting. And this is optimal as we need to return the two
MST’s which together give the sorted ordering of P .

5.2 Points on the X- and Y-axis and under the Manhattan distance

In this subsection, we study an interesting variation when the distance is Man-
hattan (L1) and all the data points (including c1 and c2) are on the X- and
Y-axis. We call this version the X+Y case, which we show to be solvable in
polynomial time as follows.

The following definition hold for both L1 and L2. The maximal segment of
a tree Ti on an half-axis H = {(x, 0) | x ≥ 0} (resp. H = {(0, x) | x ≥ 0}) is
a segment between the leftmost (resp. bottom-most) vertex of T in H and the
rightmost (resp. top-most) vertex of T in H (if ci is not on H); otherwise H
contains at most two maximal segments: one is from the leftmost (resp. bottom-
most) vertex to the vertex before ci, and the second one is from the vertex after
ci to the rightmost (resp. top-most) vertex. (Similar definitions can be made for
the half-axis along −∞ directions.) We first prove the following lemma.

Lemma 1. When all the points in P and two sites c1 and c2 are on the X- and
Y-axis, for 2-MST under the L1 metric there is an optimal solution such that all
the edges in the two MST’s T1 and T2 are on the X-axis and Y-axis; moreover,
the maximal segment of T1 and T2 on any half-axis are disjoint.
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Proof. The first part of the proof goes as follows. Suppose in one of the MST’s,
say T1, one of the edge between (xi, 0) and (0, yj) is through (xi, yj). Then by the
property of L1, we could connect (xi, 0) to (0, yj) through the origin o = (0, 0).
The new T ′

1 either has the same weight as T1 (when both the segments between
(0, 0) and (0, xi), and between (0, 0) and (yj , 0) are not in T1), or has a smaller
weight as T1 (when one of the segments between (0, 0) and (0, xi), and between
(0, 0) and (yj , 0) is already in T1).

We now assume that the optimal solution of this X+Y instance for 2-MST
under L1 metric preserves this property that we have just proved. Note that if
Ti is in the optimal solution of 2-MST, all the edges of Ti must be on the two
axes; and if ci is on one axis, say Y-axis, then the points of Ti on the Y-axis
must form at most two maximal segments, with ci in between them.

For the second part of the proof, suppose on the half-axis (o, (+∞, 0)) of X-
axis we have segments of points like P ′ = 〈p1,1, · · · , p1,q, p2,1, · · · , p2,r, p1,q+1, · · · , p1,q+s

〉, where p1,i ∈ T1 and p2,j ∈ T2; moreover, we can assume that c1 and c2 are out
of these segments (if not, we just choose the overlapping segments not contain-
ing c1 and c2). Then we can obviously switch the points in the middle without
increasing the weight of T1 and T2 as follows. If c1 and c2 are both to the left
of p1,1, we just assign the leftmost r points in P ′ to T2 and the remaining ones
to T1; if c1 and c2 are both to the right of p1,q+s, we just assign the rightmost
r point in P ′ to T2 and the remaining ones to T1. If c1 is to the left of p1,1 and
c2 is to the right of p1,q+s, we just assign the rightmost r points in P ′ to T2 and
the remaining ones to T1. If c1 is to the right of p1,q+s and c2 is to the left of
p1,1, we just assign the leftmost r points in P ′ to T2 and the remaining ones to
T1. ⊓⊔

X

o

Y

1 2 4

3

−1

c1

c2

Fig. 4: An example of optimal solution for 2-MST under the L1 distance on the
half-axis (o, (∞, 0)): in T1, c1 = (0, 3) takes the 2n points in the 2ε-interval
centered at (2, 0); in T2, c2 = (0,−1) takes the two groups of n points in the 2ε-
intervals centered at (1, 0) and (4, 0). Following Lemma 1, we could partition all
the n points near (1, 0) and the first n points near (2, 0) to T1 and the remaining
points to T2, without increasing the maximum weight of T1 and T2.
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If we denote a continuous segment of points of P on the X-axis belonging to
T1 as A and a segment of points of P on the X-axis belonging to T2 as B. The
above lemma basically shows that in some optimal solution for 2-MST for this
X+Y case, there is no pattern like A-B-A on any of the half-axis in the X- and
Y-axis. Suppose there is an optimal solution with the A-B-A pattern: making
c1 = (0, 3) and c2 = (0,−1) and three group of points (points are all within an
interval of length 2ε) around (2, 0) (with size 2n), around (1, 0) and (4, 0) (each
with size n). One optimal solution is for c1 to take the 2n points near (2, 0) and
c2 to take the remaining two groups of points (Fig. 4). The optimal solution
value is 5+ ε. But we could easily switch all the points near (1, 0) to T1 and put
the first half of n points near (2, 0) to T1. The weight of T2 is unchanged and
the weight of T1 is decreased by ε. We then have the following theorem.

Theorem 5. When all the points in P and two sites c1 and c2 are on the X-
and Y-axis, 2-MST under the L1 metric can be solved in O(n4) time.

Proof. Following Lemma 1, we can solve this problem in O(n4) time. We first
sort the points of P on the X-axis into PX and then we sort the points of P on
the Y-axis into PY . Then we enumerate all possible way to cut PX and PY into
at most 2 groups in each of the 4 half-axis. The total number is O(n4). Then,
fixing each combination of cuts on the 4 half-axes, we check if a feasible solution
exists, and if so, we compute the two MST’s (including c1 and c2 respectively)
in O(1) time — for each group we only need to compute its two extreme points
when computing an MST. Consequently, we can compute the optimal solution
of the 2-MST problem when all the points are on the X- and Y-axis in O(n4)
time. ⊓⊔

5.3 Points on the X- and Y-axis and under the Euclidean distance

We now look at the X+Y case in this subsection by using the Euclidean distance.
It turns out that the problem is much harder, as obviously not all the edges in
an MST are along the X- and Y-axis. In fact, different from the L1 case, on
any half-axis even the interleaving A-B-A scenario is possible for 2-MST in L2

(Fig. 7). However, we show that a pattern like A-B-A-B-A is not possible —
assuming c1 and c2 are not on the same half-axis. Based on that, we can give
a polynomial time algorithm in O(n13) time as well. First, we show a lemma
regarding a property of an MST for points on the X- and Y-axis.

Lemma 2. When all the points in a set Q are on the X- and Y-axis, in an MST
of Q under the L2 metric, there are at most two consecutive segments of points
of Q on the X-axis (and respectively, Y-axis) not containing ci.

Proof. In fact, we show a stronger statement: along any of the four half-axes not
containing ci, say ((0, 0), (+∞, 0)), there is at most one segment of points in the
MST T . WLOG, we refer to Fig. 5, where the MST connects two segments of
points through the edge (a, d) and (c, e). By triangle inequality, we could replace
the edge (c, e) with (b, c). Then we would have a spanning tree with a smaller
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weight, as |ce| > |oc| > |bc|. This contradicts the optimality of the assumed MST
T . ⊓⊔

X

Y

a b

d

e

c
o

Fig. 5: Illustration for the proof of Lemma 2.

Note that the proof also implies that when computing the MST T , it all
matters to identify the point closest to the origin o in each of the half-axis, if o
is not in the input set P . We now explore more properties for 2-MST.

Lemma 3. For the 2-MST problem under the L2 metric, given each half-axis,
say ((0, 0), (+∞, 0)), except for the maximal segments connected with points on
the Y-axis the optimal solution T1 and T2 must either partition the remaining
points on the half-axis, possibly separated by (ci, if any) into two parts, or one
of them takes all the points on it.

Proof. We focus on the half-axis ((0, 0), (+∞, 0)), and assume that the partition
of points on this half-axis form five segments [a, b], [c, d], [e, g], [u, v] and [w, z],
where [a, b] and [c, d] connect to some points/sites on the Y-axis, [e, g] and [w, z]
belong to T1 and [u, v] belongs to T2 (Fig. 6 (I)). WLOG, assume that c1 and
c2 are out of the interval [c, z]. In this case, similar to the proof of Lemma 1, we
show that we can decrease the number of segments of T1 and T2 without changing
the connection (a, h) and (c, i) and without increasing the maximum weight of
them. This can be done by partitioning the points in the segments/groups to the
right of the last connection to the points in the Y-axis (i.e., segments [e, g], [u, v]
and [w, z] to the right of point c in Fig. 6 (I)) into two parts; more precisely,
partition these points into two parts according to the position of c1 and c2. In
Fig. 6 (II), when c1 and c2 are out of the interval [c, z], then partition these
points so that the leftmost |[u, v]| of them are merged with the segment [c, d] for
T1 and the remaining ones are merged with [w, z] for T2. It is obvious that our
goal is achieved.

Similar arguments obviously hold for the points between c1 and c2 (when c1
and c2 are on the same half-axis). ⊓⊔

Fig. 6 (III) shows that partition into two groups to the right of the segment
containing c could happen, as long as the number of points in the rightmost three
groups satisfy n2 > n1 and n2 > n3. This example cannot be further improved
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Fig. 6: Illustration for the proof of Lemma 3.
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without changing the connection (i, c) as in the example we set n1 = 1, n2 = 8
and n3 = 2. Note that the above lemma implies that, even excluding the segment
bounded by c1 and c2 (when they are on the same half-axis), the pattern of A-
B-A-B or B-A-B-A on any half-axis might still be possible, which enables us
to design a polynomial-time algorithm. But we do not know yet if that pattern
could really happen in real life. In Fig. 7, we present an example where we do
have the pattern A-B-A on an half-axis.

Xo
1

1

5

n/2n/2

Y

n/2−1n/2−1

5

c1

c2

9
√
2 + 1

Fig. 7: An example of optimal solution for 2-MST under the L2 distance. In the
example, T1 includes black points composed of two blocks of n/2−1 points each
(located in a small 2ε-interval), plus two black points within distance 1 to the
original o. They are all on the X-axis and together with c1 = (0,−1) we form T1,
which has a weight of 10

√
2 + 2ε). T2 is composed of two blocks of n/2 points

on the X-axis (each within a 2ε-interval located at a distance 5 from the origin),
which are grouped with c2 = (0, 5) to form T2. The weight of T2 is also 10

√
2+2ε.

The algorithm for 2-MST for this X+Y case is then easy. First, ignore the case
when c1 and c2 are on the same half-axis. We compute T1 by at most 3-cutting
the points and then selecting at most two segments along each of the 4 half-axes
((0, 0), (+∞, 0)), ((−∞, 0), (0, 0)), ((0, 0), (0,+∞)), and ((0, 0), (0,−∞)). This
gives us O((n3)4) = O(n12) number of partitions for T1. Then if c1 and c2 are on
the same half-axis, by Lemma 3, we need one more cut to partition the points
in between them. The total number of partitions for T1 is O(n13). T2 will then
take the remaining segments. Hence, all pairs of (T1, T2) can be enumerated in
O(n13) time. In an optimal solution such a set of at most 9 segments of points
must exist, i,e., they cover exactly n points and c1. If we presort the points in the
4 half-axes, then this can be checked in O(1) time. Hence, T1 can be computed
in O(1) time when its segments are given. Then, given each set of at most 9
(complementary) segments, we can compute the MST of the remaining points
as T2 in O(1) time. This gives us the following theorem.
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Theorem 6. When all the points in P and two sites c1 and c2 are on the X-
and Y-axis, 2-MST under the L2 metric can be solved in O(n13) time.

6 Concluding Remarks

In this paper, we studied the 2-TSP and 2-MST problems as variations and
generalizations of the 2-squirrel problem we start with. While several results
have been obtained, there are still many open questions. The first question is
whether we could improve the approximation factors for 2-TSP and 2-MST. The
second question is for the X+Y case of 2-MST under the Euclidean distance; we
suspect that the O(n13) upper bound is not tight. There are possibly two ways
to improve the bound: (1) if the pattern A-B-A-B on an half-axis (not containing
ci) can be shown to be impossible, then we only need at most two cuts on each
of them, leading to a running time of O(n9); (2) even if the pattern A-B-A-B on
an half-axis (not containing ci) is really possible, they might not appear in each
half-axis at the same time, then some improvement might still be possible.
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