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Abstract. In this paper, we start with a variation of the star cover
problem called the Two-Squirrel problem. Given a set P of 2n points
in the plane, and two sites ¢1 and c2, compute two n-stars S; and So
centered at c¢; and cp respectively such that the maximum weight of
S1 and S3 is minimized. This problem is strongly NP-hard by a reduc-
tion from Equal-size Set-Partition with Rationals. Then we consider two
variations of the Two-Squirrel problem, namely the Two-MST and Two-
TSP problem, which are both NP-hard. The NP-hardness for the latter
is obvious while the former needs a non-trivial reduction from Equal-size
Set-Partition with Rationals. In terms of approximation algorithms, for
Two-MST and Two-TSP we give factor 2.4268 and 2+ ¢ approximations
respectively. Finally, we also show some interesting polynomial-time solv-
able cases for Two-MST.

Keywords: Minimum star/tree cover - NP-hardness - Set-Partition -
Approximation algorithms - Minimum spanning tree (MST) - TSP

1 Introduction

Imagine that two squirrels try to fetch and divide 2n nuts to their nests. Since
each time a squirrel can only carry a nut back, this naturally gives the following
problem: they should travel along the edges of an n-star, centered at the cor-
responding nest, such that each leaf (e.g., nut) is visited exactly once (in and
out) and the maximum distance they visit should be minimized (assuming that
they travel at the same speed, there is no better way to enforce the fair division
under such a circumstance). See Figure 1 for an illustration.

A star S is a tree where all vertices are leaves except one (which is called
the center of the star). An n-star is a star with n leaf nodes. When the edges
in S carry weights, the weight of S is the sum of weights of all the edges in S.
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Fig. 1: Two squirrels A and B try to fetch and divide 2n nuts.

Given two points p, ¢ in the plane, with p = (z,,y,) and ¢ = (24, y,), we define
the Euclidean distance between p, ¢ as d(p, q) = |pq| = /(zp — 24)? + (Yp — yq)?
and the Ly or Manhattan distance between them is defined as dy(p, q) = |z, —
Tql + [Yp — Yql-

Formally, the Two-Squirrel problem can be defined as: Given a set P of 2n
points in the plane and two extra point sites ¢; and cy, compute two n-stars
S1 and Sy centered at c; and cy respectively such that each point p; € P is a
leaf in exactly one of S; and S3; moreover, the maximum weight of S; and S
is minimized. Here the weight of an edge (c;,p;) in S; is w(c;, pj) = d(ci, p;)
for i = 1,2. One can certainly consider a variation of the two-squirrel problem
where the points are given as pairs (pa;—1, pa;) for i = 1,...,n, and the problem
is to split all the pairs (i.e., one to ¢; and the other to cg) such that maximum
weight of the two resulting stars is minimized. We call this version Dichotomy
Two-Squirrel.

A more general (and probably more interesting) version of the problem is
when the two squirrels only need to split the 2n nuts and each could travel along
a Minimum Spanning Tree (MST) of the n points representing the locations
of the corresponding nuts, which we call the Two-MST problem: Compute a
partition of P into n points each, P; and P», such that the maximum weight
of the MST of P; U{c1} and Py U {ca}, i.e., max{w(P1 U {c1}), w(Pe U {c2})},
is minimized. Similarly, we could replace MST with TSP to have the Two-TSP
problem.

Covering a (weighted) graph with stars or trees (to minimize the maximum
weight of them) is a well-known NP-hard problem in combinatorial optimiza-
tion [3], for which constant factor approximation is known. Recently, bi-criteria
approximations are also reported [4]. In the past, a more restricted version was
also investigated on graphs [9]. Our Two-Squirrel problem can be considered a
special geometric star cover problem where the two stars are disjoint though
are of the same cardinality, and the objective function is also to minimize the
maximum weight of them.

It turns out that, when the coordinates of points are rationals, both Two-
Squirrel and Dichotomy Two-Squirrel are strongly NP-hard (under both the
Euclidean and L; metric, though we focus only on the Euclidean case in this pa-
per). The proofs follow directly from two variations of the famous Set-Partition
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problem [5, 6], namely, Equal-Size Set-Partition with Rationals and Dichotomy
Set-Partition with Rationals, which are both strongly NP-hard with the recent
result by Wojtczak [8]. We then show that Equal-size Set-Partition with Ra-
tionals can be reduced to Two-MST in polynomial time, which indicates that
Two-MST is NP-hard. (Note that in this proof, the constructed points have real
coordinates.) On the other hand, Two-TSP is obviously NP-hard as the TSP
problem is NP-hard.

As for approximation algorithms, both Two-Squirrel and Dichotomy Two-
Squirrel admit a FPTAS (note that this does not contradict the known result
that a strongly NP-hard problem with an integral objective function cannot
be approximated with a FPTAS unless P=NP, simply because our objective
functions are not integral). This can be done by first designing a polynomial-time
dynamic programming algorithm through scaling and rounding the distances to
integers, obtaining the corresponding optimal solutions, and then tracing back
to obtain the approximate solutions. The approximation algorithm for Two-
MST is more tricky; in fact, with a known lower bound by Chung and Graham
related to the famous Steiner Ratio Conjecture [2], we show that a factor 2.4268
approximation can be obtained. Using a similar method, we show that Two-TSP
can be approximated with a factor of 2 + €.

In the end, we show two interesting polynomial-time solvable cases: when all
the points in P and the two sites are on the X- and Y-axis, the problems are
polynomially solvable under both the L; and Ly distances. The running times
are O(n*) and O(n'?) respectively.

The paper is organized as follows. In Section 2, we give some necessary defini-
tions. In Section 3, we present our NP-hardness result for the Two-MST problem.
In Section 4 we present the approximation algorithms for Two-TSP and Two-
MST. In Section 5, we show the special polynomial-time solvable cases. And in
Section 6 we conclude the paper.

2 Preliminaries

In this section, we first define Equal-size Set-Partition for Rationals and Di-
chotomy Set-Partition for Rationals which are generalizations of Set-Partition
5, 6].

In Dichotomy Set-Partition with Rationals, we are given a set E of 2n positive
rationals numbers (rationals, for short) with F = E{ U E, U --- E/, such that
E! ={ai1,ai2} is a 2-set (or, B} = (a;1,0a;2), i.e., as a pair) and the problem
is to decide whether E can be partitioned into £ and E5 such that every two
elements in E] is partitioned into E; and Es (i.e., one in E; and the other in Es
— clearly |Ey| = [E2| = n) and ) ,cp a = > ,cp, b (Equal-size Set-Partition
with Rationals is simply a special case of Dichotomy Set-Partition with Rationals
where F is given as a set of 2n rationals, i.e., E = {a1, a2, - ,a2,} and E!’s are
not given.)

With integer inputs, both Dichotomy Set-Partition and Equal-size Set-Partition,
like their predecessor Set-Partition, can be shown to be weakly NP-complete. Re-
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cently, Wojtczak proved that even with rational inputs, Set-Partition is strongly
NP-complete [8]. In fact, the proof by Wojtczak implied that Dichotomy Set-
Partition and Equal-size Set-Partition are both strongly NP-complete — because
in this reduction from a special 3-SAT each pair z; and Z; are associated with
two unique rational numbers which must be split in two parts. So we re-state
this theorem by Wojtczak.

Theorem 1. FEqual-size Set-Partition with Rationals and Dichotomy Set-Partition
with Rationals are both strongly NP-complete.

It is straightforward to reduce Equal-size Set-Partition with Rationals to
Two-Squirrel (with rational coordinates) and Dichotomy Set-Partition with Ra-
tionals to Dichotomy Two-Squirrel (with rational coordinates), as each point is
directly connected to either ¢; or ¢o. Hence, both Two-Squirrel and Dichotomy
Two-Squirrel are strongly NP-hard when the coordinates of the input points are
rational.

Coming to Two-MST, the story is quite different. Since the structure of an
MST is not fixed (i.e., even if we know that two points u,v € P belong to Ty, the
MST of P; U{c1}, we do not know how u, v are connected before T} is actually
computed). Nonetheless, we show in the next section that Two-MST is NP-hard.

3 NP-hardness for Two-MST

In this section, we prove that the Two-MST problem (2-MST for short), is
NP-hard. (Our construction requires that the coordinates of the points are real
numbers.) Recall that in the 2-MST problem, one is given a set P of 2n points in
the plane, together with two point sites ¢; and ¢y, the objective is to compute two
MST Ty and T3 each containing n points in P (and ¢; and cg respectively) such
that the maximum weight of 77 and T5, max{w(T}),w(T>}, is minimized. Here
the weight of any edge (p;, p;) or (p;, ¢x) in Ty, k = 1..2, is the Euclidean distance
between the two corresponding nodes. We reduce Equal-size Set-Partition for
Rationals [8] to 2-MST in the following. Note that in the proof by Wojtczak [8],
a set S of 2n rationals, with a total sum of 2n, were constructed such that the
only partition is to partition them into two equal-size sets with n rationals, each
having a sum of value n.

Theorem 2. Two-MST is NP-hard.

Proof. We reduce Equal-size Set-Partition with Rationals to Two-MST. Note
that, given E = {ay,as,- - ,as,} where each a; (i = 1..2n) is a rational number
and ), a; = 2t, for Set-Partition with Rationals we need to partition £ into two
sets Fy and Fs such that |E;| = |Fs| and the rationals in E; and Es sum the
same, i.e.,t =3 cp a=> p b We construct 10n+4 points in P as well as 2
point sites ¢; and c¢y. We first show our ideas, then follow with the construction
of these points with coordinates — mostly along the X-axis.

The building block of each a; is a rectangle B; = (b; 1,b;2,b; 4, b;3) in clock-
wise order with b; 1 being the top-left corner point; in addition, p; (on the X-axis)
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is the center of this rectangle B; (see Fig.2 (II)). In other words, each a; will be
transformed into a group of 5 points. The horizontal edge length of B; is 24a;
and the height of B; is 10a,; hence the distance from the center p; to any of the
corner point is 13a;. The crucial point is that, at B;, if 71 and 75 start at b; 1
and b; 3 respectively, then one of them would include p; and ending at b; » and
b; 4 respectively (or vice versa). As a matter of fact, the difference of the parts
of Ty and T3 spanning B; U{p;} is 2 x 13a; — 2 x 12a; = 2a;. We place the B;’s in
a way such that the right edge of B; and the left edge of B;;; form an isosceles
trapezoid T;, symmetric along the X-axis, such that the non-vertical edges have
a length of 2¢ (note that 2t > a;, 2t > a;41). As a matter of fact, going from left
to right, if 77 (resp. T%) includes b; o (resp. b; 4), then the shortest paths from
them to reach B are < b;2,b;41,1 > and < b; 4, b;11,3 > respectively, which
both have a length of 2.

.Crlﬁ,,,TQ ,,,,,, B, T B> T2
o ,,,,,,,,,,,,,, D M,,«»Y:O
C2 20 T Q'tw—nx ””,,,_Qt

bi 1 2404 bi’2
10a;
b3 B; bia

Fig. 2: Illustration for the reduction from Equal-size Set-Partition with Rationals
to 2-MST, the left part (I). Block B;, note that the distance from the center p;
to any of the 4 corners is 13a; (II).

At the end of Bs,, we construct four points bapi1 = bapta (on the X-
axis), ¢ and r. They form a regular triangle with d(bent1,9) = d(bant1,7) =
d(q,r) = 4nt. As the distance d(q,r) is so large (compared with the opti-
mal solution for 2-MST), the optimal solution must split them in a way such
that {bani1,q} € T1 and {bo, 12,7} € Ts or vice versa. Moreover, we can set
d(bgnﬁg, b2n+1) = d(bgn’4, b2n+1) =4nt; i.e., < b2n73, l)2n+17 bgn’4 > form an isoce-
les triangle with long edge length 4nt (or we can say < bay, 3, ban+1, bant2,bana >
form a degenerate isoceles trapezoid Ts,, with edge length 4nt. Obviously, in the
optimal solution by, 3 and by, 4 must be split into 77 and 75 respectively, or vice
versa.

We briefly discuss the coordinates of the points constructed; in fact, they
could be constructed in an incremental way. First set ¢; = (0,10a1),¢0 =
(0, —10ay), and construct the group of 5 points as the vertices and center of
Bl, with b171 = (2t, 10(11), b1’2 = (Qt + 24&1,10&1), b173 = (2t,—10a1), b1’4 =
(2t +24ay,—10a;) and p; = (2t+12a1,0). Then we construct 7; and B; 1 U{p;}
for i = 1 to 2n incrementally. WLOG, let a; < a;4; and the coordinates of
bi2 and b; 4 be b; 2 = (x;,10a;) and b; 4 = (x;, —10a;) respectively. Then the
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coordinates of points in B;11 U {p;+1} are

biyin = (w + /(202 — (10(aiy1 — )2, 10a;:41),

bi+172 = (331 + \/(2i)2 — (10(&1‘4_1 — ai))z + 24&,’4_1, 106Li+1),
biyrs = (i + /(202 — (10(as11 — )2, —10a;11),

bisia = (zi +/(26)2 — (10(aiy1 — a;))? + 240,41, —10a;41)

and

pi1 = (@i +V/(26)2 — (10(as1 — a;))% + 120511, 0).

The coordinates for ba,+1 and ba, 4o are (o, + \/(4nt)2 — (10a2,)?,0), and the
coordinated of ¢ and r are ¢ = (w2, + \/(4nt)2 — (10a2,)? + 2v/3nt, 2nt) and
r = (2o + /(4nt)2 — (10az,)? + 2v/3nt, —2nt). Note that to the right of B,
the points are virtually all having real coordinates. See Fig 2. (I) and Fig. 3 for
the construction.

We show next that Equal-size Set-Partition with Rationals has a solution
iff the 2-MST instance P U {c1,c2} admits a solution with optimal weight of
(12n + 2)t.

“If part”: If E' can be partitioned into E; and Ey such that 3 p a =
Zb€E2 b = t, we show how to construct two MST’s as follows. Up to Bs,, we
include all the points above the X-axis to T7 and all the points below the X-axis
to Ty. For p;’s, if a; € F; then we include p; in 11, if a; € F5 then we include
p; in Ty (each will incur a cost of 2a;). We then include bo,11 and by, 12 (and g
and r) to T1 and T5 respectively. Obviously we have |Ty| = |T3| = 5n + 3, and
the weight of them are both (12n + 2)t.

“Only-if part”: Now suppose that points in P are partitioned into P; and P;
such that the MST’s of Py U{c1} and P, U{ca} are T} and T3 respectively, and
the maximum weight of T} and T5 is (12n+2)t. Following the previous argument,
we must split ¢ and r (hence also by, 1 and bay,42, and subsequently ba,, 2 and
ban,4) into Ty and T to have a weight less than 16nt. Similarly, we need to split
b1,1 and by 3 into T and T as otherwise we would have a solution larger than
(12n + 2)t — since d(Cl, b173) > d(clabl,l) = 2t and d(CQ, b171) > d(CQ, b173) = 2t.
Likewise, not splitting b1 ; and by 3 into T and T, e.g., including both of them
in Th or Ty, would incur a cost of 2t 4+ 10a; > 2t, which would lead to a higher
total cost.

We now show with induction that the current optimal solution (say T3) for
points up to B; is 2it (the major cost) plus the cost of including some center
p;’s (1 < j < 4); moreover, 71 must include b; 2, T must include b; 4 and the
cost of the other MST 75 is minimized. The basis is obvious: since 17 must
include by ; and T must include b; 3, to reach the end of B; (i.e., by 2 and by 4),
T} needs to include b; » and p; to maintain the optimality of a local solution
(2t + 26a4 ), and T» must include by 4 to have a cost of 2t 4 24a,. Note that if we
let 77 include p; and by 4, and T3 include by 2, although the cost of 77 remains
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the same (2t + 26a1), the cost of Ty becomes 2t + 26a, which is not minimized
anymore.

Now assuming the inductive hypothesis holds for i, let us consider B; 1. In
very much the same way, let the local optimal solution (say 77) end at b; o, and
T5 end at b; 4, with both the major cost being 27¢. Clearly, in covering points in
Biy1, T (resp, T3) should not include b; 41 3 (resp. biy1.1) as that will increase the
major cost to more than 2(i+ 1)t (since in T3, d(b; 2, biy1.3) > d(bi2,bi41,1) = 2t
and d(b;4,bi411) > d(b;a,bi41,3) = 2t). Then, for the same argument as in
the basis, if 77 includes b; 114 and T5 includes b;; 1.2 then the cost of T3 is not
minimized.

At this point, it can be seen that the optimal solution boils down to split p;’s
to T and T5. As we have 2n p;’s and the splitting of each p; would incur a cost
of 2a;, by symmetry, the optimal solution must split them into 7} and 75 such
that each would incur an additional cost of 2¢ (note that >, _, ., a; = 2t), for a
total cost of 2(2n)t + 2t + (4nt + 4nt) = (12n + 2)¢. The splitting of these a;’s in
T1 and T would return us a solution for Equal-size Set-Partition with Rationals,
ie., if a; is in Ty then Ey + Fj U{a;}, and if a; is in T5 then FEy < Fs U {a;};
moreover »_,cp a =), o b=t

This reduction obviously takes linear time, hence the theorem is proven. 0O

We comment that with this proof, a variation of 2-MST, e.g., even if ¢; and
co are not given in advance, remains NP-hard. Also, with a minor modification
we could show that Two-MST is NP-hard under the L; distance as well. In
addition, Two-TSP is obviously NP-hard: given a set of points P and suppose
we want to compute a TSP of P. We just create another copy of P, P’ and
translate P’ to be far away from P (say, by a distance of 10 times the diameter
of P), then fix a point p in P as ¢; and the corresponding copy p’ in P’ as cs.
Then the optimal solution for TSP for P is exactly the same as the Two-TSP
solution for P U P’ U {cy,ca}.

In the next section, we present constant-factor approximations for Two-MST
and Two-TSP.

.
7
,,,,,, Ton—1 Bon Ton
[ epwlitan,
,,,,,, i Int
e

Fig. 3: Illustration for the reduction from Equal-size Set-Partition with Rationals
to 2-MST, the right part.
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4 Constant-factor Approximations for Two-TSP and
Two-MST

Note that, when the coordinates of points are rational, both Two-Squirrel and
Dichotomy Two-Squirrel admit a FPTAS. This can be done, as suggested by Wo-
jtczak [8] for the corresponding counterparts of Set-Partition (with rationals),
by first designing a polynomial-time dynamic programming algorithm through
scaling and rounding the distances to integers, obtaining the corresponding op-
timal solutions, and then tracing back to obtain the approximate solutions. This
method does not work for 2-TSP and 2-MST, and in this section we design
constant-factor approximations for the two problems separately.

4.1 A (2 + ¢)-Approximation for Two-TSP

Recall that we are given a set P of 2n points in the plane, and two sites ¢; and
ca. Our goal is to partition P into two sets P; and P» each of size n and find
TSP tours of Py U {c1} and P, U {c2} so that the maximum of the two tours is
minimized.

Consider an (unknown) optimal partition Py U P, of P with optimal TSP
tours T7 of Py U{c1} and T of P, U{ca}. Denote the optimum value by OPT =
max{w(T1), w(T2)}. Let d = min{d(z,y)} over x € PyU{c1} and y € P, U{c2}.
In words, d is the smallest distance of a pair of points from different sides of the
optimal partition.

Even though d is unknown, we can “guess it” by going through all the pos-
sible values, and taking the one that leads to the best solution. As there are
at most (*"?) € O(n?) distances to consider, the overhead for doing this is a
multiplicative factor of O(n?) in the running time. For a given value of d, we
construct the graph G4 with vertex set P U {cy, c2} and edge set {{z,y} | z,y €
P U {c1,c2} and d(z,y) < d}. In words, G4 has edges between pairs of points
that are at distance strictly less than d.

Notice that if ¢; and ¢y are in the same component of G4, then our guess for
d is wrong and the true value of d must be smaller. Similarly, if some component
of G4 has more than n+ 1 vertices, then our value of d must be wrong. (In both
cases, we would have an edge between P; U {c;} and P U {c2} of length less
than d, contradicting the definition of d.) Constructing G4 and verifying both
conditions (by simple traversal) takes O(n?) time.

If the component of ¢; or ¢y in G4 has exactly n 4+ 1 vertices, then it must
exactly be the set Py U{c1} or P,U{c2} (assuming our value for d is the correct
one). Having identified the optimal partition, we can obtain a (14-¢)-approximate
solution directly, using the known PTAS for TSP [1, 7] to compute TSP tours of
both sides of the partition.

Assume thus that the components of G4 that contain ¢; and ¢y both have
fewer than n + 1 vertices. Then, in the optimal 2-TSP solution both sides must
merge at least two components of G4, and thus use at least two edges of length
at least d. It follows that OPT > 2d.
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We now proceed by finding a (1+¢)-approximate T'SP tour T of PU{cy,c2}
by the known PTAS [1,7]. Starting from ¢; and going along T either clock-
wise or counter-clockwise, we can find n other vertices before reaching cs. La-
bel the tour in this order as (z1,z2,...,Zont2,21) where £1 = ¢;. Then let
Cl = (1‘1, L2y .oy Ly, 41, 56’1) and CQ = ($n+27 L4353 L2041, L2042, $n+2)~
Clearly Cy and C5 form a solution, whose cost is max{w(C1),w(C2)} < w(T),
where we used the triangle-inequality to relate w(C7) and w(C3) to w(T).

Now we relate w(T') to the optimum cost. Let T* be the optimal TSP tour
of PU {Cl, CQ}.

W) (T is obtained by PTAS for TSP)
(I+¢)
<w(Th) +w(Tz) +2d
< 2max{w(Ty),w(Ts)} + 2d (max,+ inequality)
<20PT + OPT (by optimality of T1,T> and OPT > 2d)
= 30PT.

Here, the second inequality follows by observing that the optimal 2-TSP
solution 77,75 can be transformed into a TSP tour of P U {c1,ca} (possibly
worse than the optimal T™*) by adding a double-edge of length d.

It follows that, by returning Cy and Cs, we have a (3 + &’)-approximation
(for &’ = 3¢), with a running time that is dominated by the PTAS for TSP, and
thus, polynomial, for every finite ¢’ > 0.

We can improve the guarantee at the expense of the running time. Assume
that we know the correct value of d and constructed the graph G4 as discussed
above. Fix some error parameter € > 0 and let k¥ = [1/¢]. We have two cases.

(I) If at least one of Py U{c1} and P» U{ca} is formed by merging at most k
components of G4. In this case we can “guess” this set of components by going
through at most Zf:l (") € O(n*) € n®0/9) possibilities. Once we identify the
correct set of components, we have determined P; U {¢;} and Py U{c2}, and we
can compute a (1 + &)-approximate solution for both by the known PTAS. Our
overall approximation ratio is (1 + ).

(IT) If both P; U {c1} and P, U {co} are formed by merging more than k
components of G4, then both T and T5 include at least k edges not in G4. We
obtain that OPT > kd. This strengthens the fourth inequality above, yielding
2max{w(T1),w(Tz)} +2d < 20PT + (2/k)OPT < (24 2¢)OPT.

Thus, the approximation ratio of the solution Cy, s described before is at
most (1 4 ¢)(2 4 2¢), yielding a (2 + ¢’)-approximation, for every & > 0, by
appropriately choosing € € O(¢’).

In all cases, we obtain the desired approximation ratio, with the running time
dominated by the PTAS for TSP. In summary, we obtain the following.

Theorem 3. Two-TSP can be approzimated with a factor-(2+¢) approzimation
algorithm which runs in time n®1/9) | is thus polynomial in n for every finite
e>0.
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4.2 A 2.4268-Approximation for Two-MST

Given a set P of 2n points in the plane and two sites ¢; and co, our goal is to
partition P into two sets P, and P, each of size n such that the maximum weight
of MST’s for P; U{c1} and P, U {ca} is minimized.

We proceed similarly as in the case of Two-TSP in Section 4.1. Consider an
(unknown) optimal partition P; U Py of P with minimum spanning trees T3 of
Py U{c1} and Ty of P U {cz}, and let d = min{d(x,y)} over x € P; U {¢1} and
y € PyU{cy}. Again we “guess” d (by going through all O(n?) possible values),
and for a given d we construct the graph G4 as in Section 4.1.

If ¢; and ¢ are connected in G4, or if some component of G4 has more than
n + 1 vertices, then our value of d must be wrong. If the component of ¢; or
co in G4 has exactly n + 1 vertices, then it must exactly be the set P U {¢1}
or P U{ca} (assuming our guessed d is correct). Having identified the optimal
partition, we can obtain an optimal solution directly by any MST algorithm (say
Kruskal’s).

Assume thus that the components of G4 that contain ¢; and ¢y both have
fewer than n + 1 vertices. Then, in the optimal 2-MST solution both both sides
must merge at least two components of G4, and thus use at least one edge of
length at least d. It follows that OPT > d.

We then consider, for the purpose of the analysis, an optimal MST T of
PU{e1,co} with cost w(T). For an arbitrary partitioning of Py U Py of P into n
vertices each, we find two MSTs C; of Py U{c;} and C5 of P, U {c2} (again, by
Kruskal’s algorithm). We have the bound max{w(Ci),w(Cs)} < 1.2134 - w(T).
The inequality holds because T is a Steiner tree of both parts (viewing the
points of the other part as Steiner points), and we have the bound of Chung and
Graham [2] that the MST-weight of a point set is at most p times the minimum
Steiner tree weight, where p < 1.2134.

Now we relate w(T") to the optimum cost.

w(T) <w(Ty) +w(Ts) +d

< 2max{w(Ty),w(T2)} +d (max,+ inequality)
<20PT + OPT (by optimality of T7,T5 and OPT > d)
= 30PT.

Here, the first inequality follows by observing that the optimal 2-MST so-
lution T, Ts can be transformed into a spanning tree of P U {c1, 2} (possibly
worse than the optimal w(T)), by adding an edge of length d. It follows that by
returning C7 and Cs we obtain a 3p-approximation. We can improve the approx-
imation ratio by the same win-win strategy as in Section 4.1. We either identify
at most k = [1/e] components of G4 that form one side of the optimal solution
and compute it directly (I), or we can strengthen the inequality OPT > d to
OPT > kd which yields a (2 + ¢)p-approximation (I).

By choosing an appropriate finite € > 0 we can get arbitrarily close to the
factor obtained by rounding 2p up to 2.4268. The running time is dominated
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by the n©(/) cost of finding the set of components forming one side of the
partition. We thus obtain the following.

Theorem 4. Two-MST can be approximated with a factor-2.4268 approxima-
tion algorithm which runs in time polynomaial in n.

Remark. The fact that the distances are euclidean is used in the approxima-
tion algorithms in only two places: (1) by the PTAS for TSP, and (2) for the
MST/Steiner-ratio p. We can generalize both results to arbitrary metrics, with
slightly worse approximation ratios, replacing (1) by a constant-factor approxi-
mation algorithm for metric TSP (say, Christofides’ algorithm), and (2) by the
appropriate ratio in the metric case.

In the next section, we present some polynomial-time solvable cases for T'wo-
MST.

5 Polynomially-solvable Cases for Two-MST

5.1 The 1-dimensional case: all data points are on a line

First consider the 1-dimensional case where P U {ci,ca} C R, the set of real
numbers. WLOG, assume that z(c;) < z(c2). Let P = {p1,...,pan} be sorted
by x-coordinates. It can be easily shown that the optimal partition of P is
Py ={p1,...,pn} and P> = {pn41,-..,pan}. Hence this version can be solved in
O(nlogn) time with sorting. And this is optimal as we need to return the two
MST’s which together give the sorted ordering of P.

5.2 Points on the X- and Y-axis and under the Manhattan distance

In this subsection, we study an interesting variation when the distance is Man-
hattan (L;) and all the data points (including ¢; and ¢3) are on the X- and
Y-axis. We call this version the X+Y case, which we show to be solvable in
polynomial time as follows.

The following definition hold for both L; and Ls. The mazimal segment of
a tree T; on an half-axis H = {(x,0) | > 0} (resp. H = {(0,z) | > 0}) is
a segment between the leftmost (resp. bottom-most) vertex of T in H and the
rightmost (resp. top-most) vertex of T in H (if ¢; is not on H); otherwise H
contains at most two maximal segments: one is from the leftmost (resp. bottom-
most) vertex to the vertex before ¢;, and the second one is from the vertex after
¢; to the rightmost (resp. top-most) vertex. (Similar definitions can be made for
the half-axis along —oo directions.) We first prove the following lemma.

Lemma 1. When all the points in P and two sites ¢; and co are on the X- and
Y-axis, for 2-MST under the L1 metric there is an optimal solution such that all
the edges in the two MST’s Ty and Ty are on the X-axis and Y-axis; moreover,
the maximal segment of T1 and T> on any half-axis are disjoint.
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Proof. The first part of the proof goes as follows. Suppose in one of the MST’s,
say T1, one of the edge between (x;,0) and (0, y;) is through (x;, y;). Then by the
property of L1, we could connect (z;,0) to (0,y;) through the origin o = (0,0).
The new Tj either has the same weight as T; (when both the segments between
(0,0) and (0, z;), and between (0,0) and (y;,0) are not in T3), or has a smaller
weight as T; (when one of the segments between (0,0) and (0, z;), and between
(0,0) and (yj;,0) is already in T7).

We now assume that the optimal solution of this X+4Y instance for 2-MST
under L metric preserves this property that we have just proved. Note that if
T; is in the optimal solution of 2-MST, all the edges of T; must be on the two
axes; and if ¢; is on one axis, say Y-axis, then the points of T; on the Y-axis
must form at most two maximal segments, with ¢; in between them.

For the second part of the proof, suppose on the half-axis (o, (400, 0)) of X-
axis we have segments of points like P’ = (p1,1, - ,P1,¢, P2,1, " "+ »P2,r, Plg+1, " » Pl,g+s
), where p1 ; € T} and po ; € T»; moreover, we can assume that ¢; and ¢ are out
of these segments (if not, we just choose the overlapping segments not contain-
ing ¢; and ¢3). Then we can obviously switch the points in the middle without
increasing the weight of 77 and T as follows. If ¢; and ¢y are both to the left
of p1,1, we just assign the leftmost r points in P’ to T» and the remaining ones
to T1; if ¢1 and co are both to the right of pi 44, we just assign the rightmost
r point in P’ to T and the remaining ones to 7. If ¢; is to the left of p; ; and
¢z is to the right of p1 445, we just assign the rightmost r points in P’ to T, and
the remaining ones to T5. If ¢; is to the right of p; 445 and ¢y is to the left of
p1,1, we just assign the leftmost = points in P’ to T, and the remaining ones to

T;. O
Y
3e
12 4
o =i =

X
-1P,

Fig.4: An example of optimal solution for 2-MST under the L, distance on the
half-axis (o, (00,0)): in Ty, ¢; = (0,3) takes the 2n points in the 2e-interval
centered at (2,0); in Ts, co = (0, —1) takes the two groups of n points in the 2e-
intervals centered at (1,0) and (4, 0). Following Lemma 1, we could partition all
the n points near (1,0) and the first n points near (2,0) to T} and the remaining
points to Ty, without increasing the maximum weight of 77 and T5.
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If we denote a continuous segment of points of P on the X-axis belonging to
Ty as A and a segment of points of P on the X-axis belonging to T as B. The
above lemma basically shows that in some optimal solution for 2-MST for this
X+4Y case, there is no pattern like A-B-A on any of the half-axis in the X- and
Y-axis. Suppose there is an optimal solution with the A-B-A pattern: making
c¢1 = (0,3) and ¢2 = (0, —1) and three group of points (points are all within an
interval of length 2¢) around (2,0) (with size 2n), around (1,0) and (4,0) (each
with size n). One optimal solution is for ¢; to take the 2n points near (2,0) and
co to take the remaining two groups of points (Fig. 4). The optimal solution
value is 5 + €. But we could easily switch all the points near (1,0) to 77 and put
the first half of n points near (2,0) to T7. The weight of T% is unchanged and
the weight of T3 is decreased by €. We then have the following theorem.

Theorem 5. When all the points in P and two sites ¢; and co are on the X-
and Y-axis, 2-MST under the Ly metric can be solved in O(n*) time.

Proof. Following Lemma 1, we can solve this problem in O(n*) time. We first
sort the points of P on the X-axis into Px and then we sort the points of P on
the Y-axis into Py. Then we enumerate all possible way to cut Px and Py into
at most 2 groups in each of the 4 half-axis. The total number is O(n*). Then,
fixing each combination of cuts on the 4 half-axes, we check if a feasible solution
exists, and if so, we compute the two MST’s (including ¢; and ¢ respectively)
in O(1) time — for each group we only need to compute its two extreme points
when computing an MST. Consequently, we can compute the optimal solution
of the 2-MST problem when all the points are on the X- and Y-axis in O(n?)
time. a

5.3 Points on the X- and Y-axis and under the Euclidean distance

We now look at the X+Y case in this subsection by using the Euclidean distance.
It turns out that the problem is much harder, as obviously not all the edges in
an MST are along the X- and Y-axis. In fact, different from the L; case, on
any half-axis even the interleaving A-B-A scenario is possible for 2-MST in Lo
(Fig. 7). However, we show that a pattern like A-B-A-B-A is not possible —
assuming c¢; and ¢y are not on the same half-axis. Based on that, we can give
a polynomial time algorithm in O(n'3) time as well. First, we show a lemma
regarding a property of an MST for points on the X- and Y-axis.

Lemma 2. When all the points in a set Q are on the X- and Y-axis, in an MST
of Q under the Ly metric, there are at most two consecutive segments of points
of Q on the X-azxis (and respectively, Y-axis) not containing c;.

Proof. In fact, we show a stronger statement: along any of the four half-axes not
containing ¢;, say ((0,0), (+00,0)), there is at most one segment of points in the
MST T. WLOG, we refer to Fig. 5, where the MST connects two segments of
points through the edge (a,d) and (¢, e). By triangle inequality, we could replace
the edge (¢, e) with (b,¢). Then we would have a spanning tree with a smaller
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weight, as |ce| > |oc| > |bc|. This contradicts the optimality of the assumed MST
T. a

Fig. 5: Hlustration for the proof of Lemma 2.

Note that the proof also implies that when computing the MST T, it all
matters to identify the point closest to the origin o in each of the half-axis, if o
is not in the input set P. We now explore more properties for 2-MST.

Lemma 3. For the 2-MST problem under the Lo metric, given each half-axis,
say ((0,0), (+00,0)), except for the mazimal segments connected with points on
the Y-axis the optimal solution Ty and To must either partition the remaining
points on the half-axis, possibly separated by (c;, if any) into two parts, or one
of them takes all the points on it.

Proof. We focus on the half-axis ((0,0), (400, 0)), and assume that the partition
of points on this half-axis form five segments [a, b], [c,d], [e, g], [u,v] and [w, 2],
where [a, b] and [¢, d] connect to some points/sites on the Y-axis, [e, g] and [w, 2]
belong to T1 and [u,v] belongs to Ty (Fig. 6 (I)). WLOG, assume that ¢; and
¢y are out of the interval [c, z]. In this case, similar to the proof of Lemma 1, we
show that we can decrease the number of segments of 77 and T without changing
the connection (a,h) and (c,i) and without increasing the maximum weight of
them. This can be done by partitioning the points in the segments/groups to the
right of the last connection to the points in the Y-axis (i.e., segments [e, g], [u, v]
and [w, z] to the right of point ¢ in Fig. 6 (I)) into two parts; more precisely,
partition these points into two parts according to the position of ¢; and cy. In
Fig. 6 (II), when ¢; and ¢y are out of the interval [c, z], then partition these
points so that the leftmost |[u, v]| of them are merged with the segment [c, d] for
Ty and the remaining ones are merged with [w, z] for Ty. It is obvious that our
goal is achieved.

Similar arguments obviously hold for the points between ¢; and ¢o (when ¢q
and ¢y are on the same half-axis). O

Fig. 6 (III) shows that partition into two groups to the right of the segment
containing ¢ could happen, as long as the number of points in the rightmost three
groups satisfy ny > n; and ny > ng. This example cannot be further improved
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Fig. 6: Hlustration for the proof of Lemma 3.
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without changing the connection (i,c¢) as in the example we set ny = 1,ny = 8
and ng = 2. Note that the above lemma implies that, even excluding the segment
bounded by ¢; and co (when they are on the same half-axis), the pattern of A-
B-A-B or B-A-B-A on any half-axis might still be possible, which enables us
to design a polynomial-time algorithm. But we do not know yet if that pattern
could really happen in real life. In Fig. 7, we present an example where we do
have the pattern A-B-A on an half-axis.

X
L -
n/2-1 n/2-1
- - -
5 9vV2+1

Fig. 7: An example of optimal solution for 2-MST under the Ly distance. In the
example, T includes black points composed of two blocks of n/2 — 1 points each
(located in a small 2e-interval), plus two black points within distance 1 to the
original o. They are all on the X-axis and together with ¢; = (0, —1) we form 77,
which has a weight of 10v/2 + 2¢). Ty is composed of two blocks of n/2 points
on the X-axis (each within a 2e-interval located at a distance 5 from the origin),
which are grouped with ¢ = (0,5) to form T». The weight of T} is also 10y/2+2¢.

The algorithm for 2-MST for this X+7Y case is then easy. First, ignore the case
when ¢; and co are on the same half-axis. We compute T} by at most 3-cutting
the points and then selecting at most two segments along each of the 4 half-axes
((0,0), (+00,0)), ((—0,0),(0,0)), ((0,0),(0,+00)), and ((0,0), (0, —oc0)). This
gives us O((n?®)*) = O(n'?) number of partitions for T;. Then if ¢; and ¢y are on
the same half-axis, by Lemma 3, we need one more cut to partition the points
in between them. The total number of partitions for 77 is O(n'3). Ty will then
take the remaining segments. Hence, all pairs of (71,7%) can be enumerated in
O(n'?) time. In an optimal solution such a set of at most 9 segments of points
must exist, i,e., they cover exactly n points and c;. If we presort the points in the
4 half-axes, then this can be checked in O(1) time. Hence, 77 can be computed
in O(1) time when its segments are given. Then, given each set of at most 9
(complementary) segments, we can compute the MST of the remaining points
as Ty in O(1) time. This gives us the following theorem.



The Two-Squirrel Problem and Its Relatives 17

Theorem 6. When all the points in P and two sites ¢; and co are on the X-
and Y-azis, 2-MST under the Ly metric can be solved in O(n'3) time.

6 Concluding Remarks

In this paper, we studied the 2-TSP and 2-MST problems as variations and
generalizations of the 2-squirrel problem we start with. While several results
have been obtained, there are still many open questions. The first question is
whether we could improve the approximation factors for 2-TSP and 2-MST. The
second question is for the X+Y case of 2-MST under the Euclidean distance; we
suspect that the O(n'?) upper bound is not tight. There are possibly two ways
to improve the bound: (1) if the pattern A-B-A-B on an half-axis (not containing
¢;) can be shown to be impossible, then we only need at most two cuts on each
of them, leading to a running time of O(n?); (2) even if the pattern A-B-A-B on
an half-axis (not containing ¢;) is really possible, they might not appear in each
half-axis at the same time, then some improvement might still be possible.
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