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Supervised Learning
e Data set:

e Training (labeled) data: 7' = {(x;, y:)}
o 1, € RP

e Test (unlabeled) data: xy € RP
e Tasks:

e Classification: y; € {1,...,J}
e Regression: y; € R

e Given new z predict yg
e Methods:
e Model-based

e Memory-based
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Classification
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credit risk assessment (source: Alpaydin ...)



Regression
Camera prices in zoom-megapixel space
Zoom
$399
m
§349
$399
$299 $449
Megapixels

source: O'Reilly ...
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k NN Algorithm

e 1 NN
e Predict the same value/class as the nearest instance in the

training set
e kNN

« find the k closest training points (small ||z; — z|| according

to some metric, for ex. euclidean, manhattan, etc.)
e predicted class: majority vote

¢ predicted value: average weighted by inverse distance
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1 NN - Voronoi diagram

source: Duda, Hart ...



k NN - Example
X2
S|
source: Duda, Hart ...
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k NN
e Classification

e use majority voting
e Binary classification

o k preferably odd to avoid ties
e Regression

k

® Yo = Zwlyl
=1

e weights:

1
o w; =

* wi~1—|zi— o

o w; ~k—rank|z; — xo|

DA



k NN Classification

@ Calculate distances of all training vectors to test vector
@® Pick & closest vectors

® Calculate average/maijority
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k NN Algorithm

Memory-based, no explicit training or model, "lazy
learning”

In its basic form one of the most simple machine learning
methods

Gives the maximum likelihood estimation of the class
posterior probabilities

Can be used as a baseline method
Many extensions
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k NN

e + Easy to understand and program
e + Explicit reject option

e if there is no majority agreement
e + Easy handling of missing values

e restrict distance calculation to subspace

e + asymptotic misclassification rate (as the number of data
points n — oo ) is bounded above by twice the Bayes error
rate. (see Duda, Hart...)
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k NN

- affected by local structure

- sensitive to noise, irrelevant features
- computationally expensive O(nd)

- large memory requirements

- more frequent classes dominate result (if distance not
weighed in)

- curse of dimensionality: high nr. of dimensions and low
nr. of training samples:

e "nearest" neighbor might be very far
e in high dimensions "nearest" becomes meaningless
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Neighborhood size

e Choice of k&

e smaller k = higher variance (less stable)
e larger k = higher bias (less precise)

¢ Proper choice of k dependends on the data:
e Adaptive methods, heuristics
e Cross-validation
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Distance metric

e Distance used:
e Euclidean, Manhattan, etc.

¢ Issue: scaling of different dimensions

¢ Selecting/scaling features: common problem for all
methods

¢ but affects k NN even more

— use mutual information between feature and output

¢ "Euclidean distance doesn’t need any weights for
features": just an illusion !!



Extensions

¢ Reducing computational load:

Space partitioning (quad-tree, locality sensitive hashing,
etc.)

Cluster training data, check input vector only against
nearest clusters

Editing (remove useless vectors, for example those
surrounded by same-class vectors)

Partial distance (take distance in less dimensions first)
Reduce training set (just sample, or use vector
guantization)



Extensions

e Improving results

e Preprocessing: smoothing the training data (remove
outliers, isolated points)
e Adapt metric to data
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Discriminant Adaptive Nearest
Neighbor Classification (DANN)

e k NN is based on the assumption that class probabilities
are locally approximately constant

¢ Not true for most neighborhoods

e Solution: change the metric, so that in the new
neighborhoods, class probabilities are "more" constant
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DANN - Motivation



DANN - Example

e |dea: DANN creates a neighborhood that is elongated
it.

along the "true" decision boundary, flattened orthogonal to

e Question: What is the "true" decision boundary?
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Linear Discriminant Analysis
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e Find w that maximizes J(w) = ('”;1121’”:222)2
(source: Alpaydin)
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Linear Discriminant Analysis
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Solution: w = (5% + S3)~(ma — my)
S; - class covariance
Idea: find nearest neighbor using distance between

projected points (same as elongating the neighborhood
parallel to boundary)

Squared distance becomes:

D(z,x0) = (z — 20)Tww! (z — 2¢)
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DANN

e Squared distance between projections:

D(x,x0) = (z — z)Tww? (z — x0) (1)
e Butwe had w = (S? + 53)~Y(mg — my)
e Denote:
o W=5%+52
e B=(ma—mi)(ma —mq)T
e We get ww’” = W=1BW~!

(within-class covariance)
(between-class covariance)

(denote by X))
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DANN

e Squared distance using 'metric’ X (just a matrix with
weights)

D(z,x9) = (x — xO)TZ($ — xp),
e if ¥ = I = Euclidean squared distance

e Reminder: X is approximation of local LDA distance

Y=wlBWw!

)
¢ to avoid neighborhoods infinitely stretching in one direction:
Y — W—l/2[w—l/23w—l/2 + EI]W_1/2

3)
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e 1 - test point

DANN

e d; - distance of x; from xq according to metric X

d; = ||="(2; — o)

4)
e h - size of the neighborhood

h = mazien, (z0)di

5)
e assign a weight w; to each point z; around z, (depending
on how far away it is in the neighborhood)
e Use tri-cubic function

wi = (- (P

(6)
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DANN

e We now have the weights w; for each x;

e The weights depend on the distances (d;), which depend
on the metric (%)

¢ We can calculate B and W, taking the weights into account

B =) aj(- 1)z -1 Y
j=1
_ Zyjf j Wi
J N
W:ZZwi(xi—fj)(xi—fj)T/Zwi (9)
J=lyi=j :

¢ 7 - the center of all vectors in the neighborhood
e z; - the center of all vectors belonging to clags J

!
S
o
i)



DANN

e We started with a metric > and a neighborhood around x
¢ Now we have B and W
e But from (3):

S =W 2w 2BW Y2 4 eqw /2

e From X we obtain X’

(10)

e [terative algorithm can be deviced (see article for proof of
convergence and more details)
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DANN Algorithm
Predicting y, for test vector xz:

@ Initialize the metric ¥ =1
@ Spread out a nearest neighborhood of K, points around
xg, using the metric X
@® Calculate the weighted 'within-" and 'between-’
sum-of-squares matrices W and B using the points in the
neighborhood (using class information)
@ Calculate the new metric 3 from (10)

@ lterate 2,3 and 4 until convergence

@ With the obtained X metric perform k NN classification
around test point xg
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Result




Choice of parameters

e K number of nearest neighbors for estimating the metric

¢ should be reasonably large, especially for high nr. of
dimensions

o K =max(N/5,50)
e K: number of nearest neighbors for final k NN rule
e K K Ky
e find using (cross-)validation
e K =5
e ¢: 'softening’ parameter in the metric
o fixed value seems OK (see article)
e >0
e c=1
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Summary

e Nearest Neighbor and k Nearest Neighbor algorithms
e Baseline methods for classification/regression
e Have some weak points

e Several variants exist

e Discriminant Adaptive NN Classification
e Finds a new metric in a larger neighborhood of the test
point

¢ Uses class information in a way similar to LDA
e Uses new metric to perform regular k NN
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Sources

@ Hastie, Tibshirani: Discriminant Adaptive Nearest Neighbor

Classification (1996)

@® Duda, Hart, Stork: Pattern Classification (Wiley, 2000)

® Hand, Mannila, Smyth: Principles of Data Mining (MIT
Press, 1999)

@ sample images from:

e Alpaydin: Introduction to Machine Learning (MIT Press,
2004)

e Segaran: Programming Collective Intelligence (O'Reilly,
2007)

e D'Silva: DANN presentation,
www.lans.ece.utexas.edu/ srean/dann.ppt
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