k Nearest Neighbors algorithm (kNN)

László Kozma Lkozma@cis.hut.fi

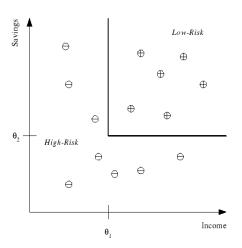
Helsinki University of Technology T-61.6020 Special Course in Computer and Information Science

20. 2. 2008

Supervised Learning

- Data set:
 - Training (labeled) data: $T = \{(x_i, y_i)\}$
 - $x_i \in \mathbb{R}^p$
 - Test (unlabeled) data: $x_0 \in \mathbb{R}^p$
- Tasks:
 - Classification: $y_i \in \{1, \dots, J\}$
 - Regression: $y_i \in \mathbb{R}$
- Given new x₀ predict y₀
- Methods:
 - Model-based
 - Memory-based

Classification



credit risk assessment (source: Alpaydin ...)

Regression

Camera prices in zoom-megapixel space



Megapixels

source: O'Reilly ...

k NN Algorithm

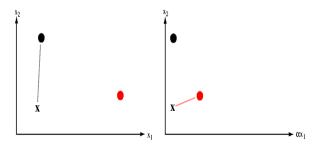
1 NN

 Predict the same value/class as the nearest instance in the training set

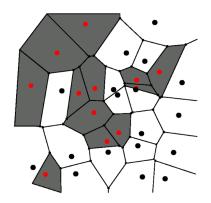
k NN

- find the k closest training points (small $||x_i x_0||$ according to some metric, for ex. euclidean, manhattan, etc.)
- predicted class: majority vote
- predicted value: average weighted by inverse distance

1 NN

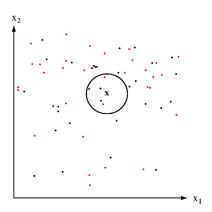


1 NN - Voronoi diagram



source: Duda, Hart ...

k NN - Example



source: Duda, Hart ...

k NN

- Classification
 - use majority voting
- · Binary classification
 - k preferably odd to avoid ties
- Regression

$$\bullet \ y_0 = \sum_{i=1}^k w_i y_i$$

- weights:
 - $w_i = \frac{1}{k}$
 - $w_i \sim 1 ||x_i x_0||$
 - $w_i \sim k rank ||x_i x_0||$

k NN Classification

- Calculate distances of all training vectors to test vector
- Pick k closest vectors
- 3 Calculate average/majority

k NN Algorithm

- Memory-based, no explicit training or model, "lazy learning"
- In its basic form one of the most simple machine learning methods
- Gives the maximum likelihood estimation of the class posterior probabilities
- Can be used as a baseline method
- Many extensions

k NN

- + Easy to understand and program
- + Explicit reject option
 - if there is no majority agreement
- + Easy handling of missing values
 - restrict distance calculation to subspace
- + asymptotic misclassification rate (as the number of data points $n \to \infty$) is bounded above by twice the Bayes error rate. (see Duda, Hart...)

k NN

- affected by local structure
- sensitive to noise, irrelevant features
- computationally expensive O(nd)
- large memory requirements
- more frequent classes dominate result (if distance not weighed in)
- curse of dimensionality: high nr. of dimensions and low nr. of training samples:
 - "nearest" neighbor might be very far
 - in high dimensions "nearest" becomes meaningless

Neighborhood size

- Choice of k
 - smaller k ⇒ higher variance (less stable)
 - larger $k \Rightarrow$ higher bias (less precise)
 - Proper choice of k dependends on the data:
 - · Adaptive methods, heuristics
 - Cross-validation

Distance metric

- Distance used:
 - · Euclidean, Manhattan, etc.
- Issue: scaling of different dimensions
- Selecting/scaling features: common problem for all methods
- but affects k NN even more
- → use mutual information between feature and output
 - "Euclidean distance doesn't need any weights for features": just an illusion!!

Extensions

- Reducing computational load:
 - Space partitioning (quad-tree, locality sensitive hashing, etc.)
 - Cluster training data, check input vector only against nearest clusters
 - Editing (remove useless vectors, for example those surrounded by same-class vectors)
 - Partial distance (take distance in less dimensions first)
 - Reduce training set (just sample, or use vector quantization)

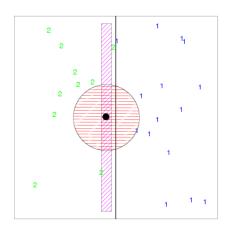
Extensions

- Improving results
 - Preprocessing: smoothing the training data (remove outliers, isolated points)
 - Adapt metric to data

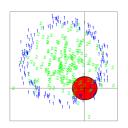
Discriminant Adaptive Nearest Neighbor Classification (DANN)

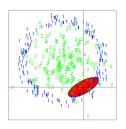
- k NN is based on the assumption that class probabilities are locally approximately constant
- Not true for most neighborhoods
- Solution: change the metric, so that in the new neighborhoods, class probabilities are "more" constant

DANN - Motivation



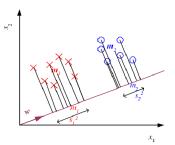
DANN - Example





- Idea: DANN creates a neighborhood that is elongated along the "true" decision boundary, flattened orthogonal to it.
- Question: What is the "true" decision boundary?

Linear Discriminant Analysis



• Find w that maximizes $J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$ (source: Alpaydin)

Linear Discriminant Analysis



- Solution: $w = (S_1^2 + S_2^2)^{-1}(m_2 m_1)$
- S_i class covariance
- Idea: find nearest neighbor using distance between projected points (same as elongating the neighborhood parallel to boundary)
- Squared distance becomes: $D(x, x_0) = (x - x_0)^T ww^T (x - x_0)$

Squared distance between projections:

$$D(x,x_0) = (x - x_0)^T w w^T (x - x_0)$$
(1)

- But we had $w = (S_1^2 + S_2^2)^{-1}(m_2 m_1)$
- Denote:
 - $W = S_1^2 + S_2^2$
 - $B = (m_2 m_1)(m_2 m_1)^T$

(within-class covariance)

(between-class covariance)

• We get $ww^T = W^{-1}BW^{-1}$

(denote by Σ)

 Squared distance using 'metric' Σ (just a matrix with weights)

$$D(x, x_0) = (x - x_0)^T \Sigma (x - x_0),$$

- if $\Sigma = I \Rightarrow$ Euclidean squared distance
- Reminder: Σ is approximation of local LDA distance

$$\Sigma = W^{-1}BW^{-1} \tag{2}$$

to avoid neighborhoods infinitely stretching in one direction:

$$\Sigma = W^{-1/2}[W^{-1/2}BW^{-1/2} + \epsilon I]W^{-1/2}$$
(3)

- x₀ test point
- d_i distance of x_i from x_0 according to metric Σ

$$d_i = \|\Sigma^{1/2}(x_i - x_0)\| \tag{4}$$

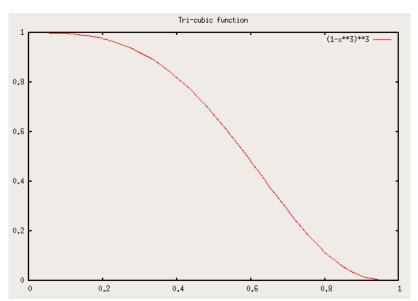
h - size of the neighborhood

$$h = \max_{i \in N_k(x_0)} d_i \tag{5}$$

- assign a weight w_i to each point x_i around x_0 (depending on how far away it is in the neighborhood)
- Use tri-cubic function

$$w_i = (1 - (\frac{d_i}{h})^3)^3 \tag{6}$$

Tri-cubic function



- We now have the weights w_i for each x_i
- The weights depend on the distances (d_i), which depend on the metric (Σ)
- We can calculate B and W, taking the weights into account

$$B = \sum_{j=1}^{J} \alpha_j (\bar{x_j} - \bar{x}) (\bar{x_j} - \bar{x})^T$$
 (7)

$$\alpha_j = \frac{\sum_{y_j = j} w_i}{\sum_{i=1}^N w_i} \tag{8}$$

$$W = \sum_{i=1}^{J} \sum_{w=i} w_i (x_i - \bar{x_j}) (x_i - \bar{x_j})^T / \sum_{i=1}^{N} w_i$$
 (9)

- \bar{x} the center of all vectors in the neighborhood
- $ar{x_i}$ the center of all vectors belonging to class j

- We started with a metric Σ and a neighborhood around x_0
- Now we have B and W
- But from (3):

$$\Sigma = W^{-1/2}[W^{-1/2}BW^{-1/2} + \epsilon I]W^{-1/2}$$
 (10)

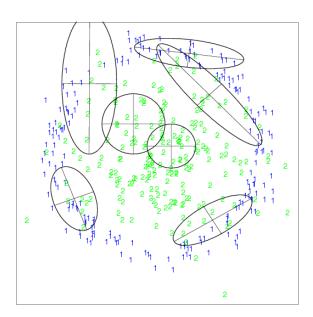
- From Σ we obtain Σ'
- Iterative algorithm can be deviced (see article for proof of convergence and more details)

DANN Algorithm

Predicting y_0 for test vector x_0 :

- **1** Initialize the metric $\Sigma = I$
- 2 Spread out a nearest neighborhood of K_M points around x_0 , using the metric Σ
- **4** Calculate the new metric Σ from (10)
- **5** Iterate 2,3 and 4 until convergence
- **6** With the obtained Σ metric perform k NN classification around test point x_0

Result



Choice of parameters

- K_M: number of nearest neighbors for estimating the metric
 - should be reasonably large, especially for high nr. of dimensions
 - $K_M = max(N/5, 50)$
- K: number of nearest neighbors for final k NN rule
 - *K* ≪ *K*_{*M*}
 - · find using (cross-)validation
 - K = 5
- ϵ : 'softening' parameter in the metric
 - fixed value seems OK (see article)
 - $\epsilon > 0$
 - $\epsilon = 1$

Summary

- Nearest Neighbor and k Nearest Neighbor algorithms
 - Baseline methods for classification/regression
 - · Have some weak points
 - Several variants exist
- Discriminant Adaptive NN Classification
 - Finds a new metric in a larger neighborhood of the test point
 - Uses class information in a way similar to LDA
 - Uses new metric to perform regular k NN

Sources

- Hastie, Tibshirani: Discriminant Adaptive Nearest Neighbor Classification (1996)
- 2 Duda, Hart, Stork: Pattern Classification (Wiley, 2000)
- 3 Hand, Mannila, Smyth: Principles of Data Mining (MIT Press, 1999)
- 4 sample images from:
 - Alpaydin: Introduction to Machine Learning (MIT Press, 2004)
 - Segaran: Programming Collective Intelligence (O'Reilly, 2007)
 - D'Silva: DANN presentation, www.lans.ece.utexas.edu/ srean/dann.ppt