
k Nearest Neighbors algorithm (kNN)

László Kozma
Lkozma@cis.hut.fi

Helsinki University of Technology
T-61.6020 Special Course in Computer and Information Science

20. 2. 2008



Supervised Learning

• Data set:
• Training (labeled) data: T = {(xi, yi)}
• xi ∈ R

p

• Test (unlabeled) data: x0 ∈ R
p

• Tasks:
• Classification: yi ∈ {1, . . . , J}
• Regression: yi ∈ R

• Given new x0 predict y0

• Methods:
• Model-based
• Memory-based



Classification

credit risk assessment (source: Alpaydin ...)



Regression

source: O’Reilly ...



k NN Algorithm

• 1 NN
• Predict the same value/class as the nearest instance in the

training set

• k NN
• find the k closest training points (small ‖xi − x0‖ according

to some metric, for ex. euclidean, manhattan, etc.)
• predicted class: majority vote
• predicted value: average weighted by inverse distance



1 NN



1 NN - Voronoi diagram

source: Duda, Hart ...



k NN - Example

source: Duda, Hart ...



k NN

• Classification
• use majority voting

• Binary classification
• k preferably odd to avoid ties

• Regression

• y0 =

k∑

i=1

wiyi

• weights:

• wi =
1

k
• wi ∼ 1 − ‖xi − x0‖
• wi ∼ k − rank‖xi − x0‖



k NN Classification

1 Calculate distances of all training vectors to test vector

2 Pick k closest vectors

3 Calculate average/majority



k NN Algorithm

• Memory-based, no explicit training or model, "lazy
learning"

• In its basic form one of the most simple machine learning
methods

• Gives the maximum likelihood estimation of the class
posterior probabilities

• Can be used as a baseline method

• Many extensions



k NN

• + Easy to understand and program
• + Explicit reject option

• if there is no majority agreement

• + Easy handling of missing values
• restrict distance calculation to subspace

• + asymptotic misclassification rate (as the number of data
points n → ∞ ) is bounded above by twice the Bayes error
rate. (see Duda, Hart...)



k NN

• - affected by local structure

• - sensitive to noise, irrelevant features

• - computationally expensive O(nd)

• - large memory requirements

• - more frequent classes dominate result (if distance not
weighed in)

• - curse of dimensionality: high nr. of dimensions and low
nr. of training samples:

• "nearest" neighbor might be very far
• in high dimensions "nearest" becomes meaningless



Neighborhood size

• Choice of k
• smaller k ⇒ higher variance (less stable)
• larger k ⇒ higher bias (less precise)
• Proper choice of k dependends on the data:

• Adaptive methods, heuristics
• Cross-validation



Distance metric

• Distance used:
• Euclidean, Manhattan, etc.

• Issue: scaling of different dimensions

• Selecting/scaling features: common problem for all
methods

• but affects k NN even more

→ use mutual information between feature and output

• "Euclidean distance doesn’t need any weights for
features": just an illusion !!



Extensions

• Reducing computational load:
• Space partitioning (quad-tree, locality sensitive hashing,

etc.)
• Cluster training data, check input vector only against

nearest clusters
• Editing (remove useless vectors, for example those

surrounded by same-class vectors)
• Partial distance (take distance in less dimensions first)
• Reduce training set (just sample, or use vector

quantization)



Extensions

• Improving results
• Preprocessing: smoothing the training data (remove

outliers, isolated points)
• Adapt metric to data



Discriminant Adaptive Nearest
Neighbor Classification (DANN)

• k NN is based on the assumption that class probabilities
are locally approximately constant

• Not true for most neighborhoods

• Solution: change the metric, so that in the new
neighborhoods, class probabilities are "more" constant



DANN - Motivation



DANN - Example

• Idea: DANN creates a neighborhood that is elongated
along the "true" decision boundary, flattened orthogonal to
it.

• Question: What is the "true" decision boundary?



Linear Discriminant Analysis

• Find w that maximizes J(w) = (m1−m2)2

s1
2+s2

2

(source: Alpaydin)



Linear Discriminant Analysis

• Solution: w = (S2
1 + S2

2)−1(m2 − m1)

• Si - class covariance

• Idea: find nearest neighbor using distance between
projected points (same as elongating the neighborhood
parallel to boundary)

• Squared distance becomes:
D(x, x0) = (x − x0)

T wwT (x − x0)



DANN

• Squared distance between projections:

D(x, x0) = (x − x0)
T wwT (x − x0) (1)

• But we had w = (S2
1 + S2

2)−1(m2 − m1)

• Denote:
• W = S2

1
+ S2

2
(within-class covariance)

• B = (m2 − m1)(m2 − m1)
T (between-class covariance)

• We get wwT = W−1BW−1 (denote by Σ)



DANN

• Squared distance using ’metric’ Σ (just a matrix with
weights)

D(x, x0) = (x − x0)
T Σ(x − x0),

• if Σ = I ⇒ Euclidean squared distance

• Reminder: Σ is approximation of local LDA distance

Σ = W−1BW−1 (2)

• to avoid neighborhoods infinitely stretching in one direction:

Σ = W−1/2[W−1/2BW−1/2 + ǫI]W−1/2 (3)



DANN

• x0 - test point

• di - distance of xi from x0 according to metric Σ

di = ‖Σ1/2(xi − x0)‖ (4)

• h - size of the neighborhood

h = maxi∈Nk(x0)di (5)

• assign a weight wi to each point xi around x0 (depending
on how far away it is in the neighborhood)

• Use tri-cubic function

wi = (1 − (
di

h
)3)3 (6)



Tri-cubic function



DANN
• We now have the weights wi for each xi

• The weights depend on the distances (di), which depend
on the metric (Σ)

• We can calculate B and W, taking the weights into account

B =

J∑

j=1

αj(x̄j − x̄)(x̄j − x̄)T (7)

αj =

∑
yj=j wi

∑N
i=1wi

(8)

W =

J∑

j=1

∑

yi=j

wi(xi − x̄j)(xi − x̄j)
T /

N∑

i=1

wi (9)

• x̄ - the center of all vectors in the neighborhood

• x̄j - the center of all vectors belonging to class j



DANN

• We started with a metric Σ and a neighborhood around x0

• Now we have B and W

• But from (3):

Σ = W−1/2[W−1/2BW−1/2 + ǫI]W−1/2 (10)

• From Σ we obtain Σ′

• Iterative algorithm can be deviced (see article for proof of
convergence and more details)



DANN Algorithm

Predicting y0 for test vector x0:

1 Initialize the metric Σ = I

2 Spread out a nearest neighborhood of KM points around
x0, using the metric Σ

3 Calculate the weighted ’within-’ and ’between-’
sum-of-squares matrices W and B using the points in the
neighborhood (using class information)

4 Calculate the new metric Σ from (10)

5 Iterate 2,3 and 4 until convergence

6 With the obtained Σ metric perform k NN classification
around test point x0



Result



Choice of parameters

• KM : number of nearest neighbors for estimating the metric

• should be reasonably large, especially for high nr. of
dimensions

• KM = max(N/5, 50)

• K: number of nearest neighbors for final k NN rule
• K ≪ KM

• find using (cross-)validation
• K = 5

• ǫ: ’softening’ parameter in the metric
• fixed value seems OK (see article)
• ǫ > 0
• ǫ = 1



Summary

• Nearest Neighbor and k Nearest Neighbor algorithms
• Baseline methods for classification/regression
• Have some weak points
• Several variants exist

• Discriminant Adaptive NN Classification
• Finds a new metric in a larger neighborhood of the test

point
• Uses class information in a way similar to LDA
• Uses new metric to perform regular k NN



Sources

1 Hastie, Tibshirani: Discriminant Adaptive Nearest Neighbor
Classification (1996)

2 Duda, Hart, Stork: Pattern Classification (Wiley, 2000)

3 Hand, Mannila, Smyth: Principles of Data Mining (MIT
Press, 1999)

4 sample images from:
• Alpaydin: Introduction to Machine Learning (MIT Press,

2004)
• Segaran: Programming Collective Intelligence (O’Reilly,

2007)
• D’Silva: DANN presentation,

www.lans.ece.utexas.edu/ srean/dann.ppt


	Introduction

