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ABSTRACT

We propose an algorithm for binary principal component
analysis (PCA) that scales well to very high dimensional
and very sparse data. Binary PCA finds components from
data assuming Bernoulli distributions for the observations.
The probabilistic approach allows for straightforward treat-
ment of missing values. An example application is collabo-
rative filtering using the Netflix data. The results are compa-
rable with those reported for single methods in the literature
and through blending we are able to improve our previously
obtained best result with PCA.

1. INTRODUCTION

Recommendation systems form an integral component of
many modern e-commerce websites. Users often rate items
on a numerical scale (e.g., from 1 to 5). If the system is ca-
pable of accurately predicting the rating a user would give
to an item, it can use this knowledge to make recommenda-
tions to the user. The collected ratings can be represented in
the form of a matrix in which each column contains ratings
given by one user and each row contains ratings given to one
item. Naturally most of the entries in the matrix are missing
(as any given user rates just a subset of the items) and the
goal is to predict these missing values. This is known as the
collaborative filtering task.

Obtaining accurate predictions is the central problem in
the research on recommendation systems. Although there
are certain requirements that a practical recommendation
system should fulfill (such as ease of interpretation, speed of
response, ability to learn online), this work addresses only
the collaborative filtering problem.

Collaborative filtering is an interesting benchmark prob-
lem for the machine learning community because a great
variety of methods is applicable there. The competition re-
cently organized by Netflix has stirred up the interest of
many researchers by a one million dollar prize. A vast
collection of approaches has been tried by the competing

teams. Among the popular ones are nearest neighbor meth-
ods on either users, items or both, and methods using matrix
decomposition [1, 2, 3, 4, 5]. It seems that no single method
can provide prediction accuracy comparable with the cur-
rent leaders in the competition. The most successful teams
use a blend of a high number of different algorithms [3].
Thus, designing methods that may not be extremely good
in the overall performance but which look at the data at a
different angle may be beneficial.

The method presented in this work follows the matrix
decomposition approach, which models the ratings using
a linear combination of some features (factors) character-
izing the items and users. In contrast to other algorithms
reported in the Netflix competition, we first binarize the
ratings and then perform matrix decomposition on binary
data. The proposed model is closely related to the models
presented in [6, 7, 8, 9]. Tipping [6] used a similar model
for visualization of binary data, while Collins et al. [7] pro-
posed a general method for the whole exponential family.
Schein et al. [8] presented a practical algorithm for binary
PCA and made extensive comparisons to show that it works
better than traditional PCA in the case of binary data. Sre-
bro and Jaakkola [9] extended the binary PCA model to the
case where each element of the data has a weight, which in-
cludes the case with missing values (using a zero weight is
the same as having a missing value in the data). The most
important difference is that our algorithm is specially de-
signed for high-dimensional data with lots of missing values
and therefore we use point-estimates for model parameters
and use extra regularization terms.

The paper is organized as follows. The proposed binary
PCA algorithm is presented in Section 2. Its application
to MovieLens and Netflix data is presented in Section 3,
followed by the discussion.



2. METHOD

The approach deals with an unsupervised analysis of data
in a matrix Y that contains three types of values: zeroes,
ones and missing values. We make the assumption that the
data are missing at random, that is, we do not try to model
when the values are observed but only whether the values
are zeroes or ones.

2.1. Binarization

As a preprocessing step, the ratings are encoded with binary
values, according to the following scheme:

1→ 0000
2→ 0001
3→ 0011
4→ 0111
5→ 1111

With this scheme, each element in the data tells whether a
rating is greater or smaller than a particular threshold. This
kind of binarization can be used also for continuous valued
data.

Let us denote by X the sparsely populated matrix of rat-
ings from 1 to 5 stars. X has dimensions m × p, where
m and p are the number of movies and the number of peo-
ple, respectively. After binarization, we obtain binary ma-
trices X1, X2, X3, X4 (one for each digit of the rating val-
ues), which we summarize in one matrix Y with dimensions
d× p, where d = 4m.

2.2. The model

We model the probability of each element yij of matrix Y
to be 1 using the following formula:

P (yij = 1) = σ(aT
i sj) (1)

where ai and sj are column vectors with c elements and
σ(·) is the logistic function:

σ(x) =
1

1 + e−x
. (2)

This can be understood as follows: The probability that the
j-th person rates the i-th movie with the rating greater then
l (assuming that yij is taken from the binary matrix Xl)
depends on the combination of c features of the movie (col-
lected in vector ai) and c features of the person (collected
in vector sj).

The features of the movies and people are not known
and have to be estimated to fit the available ratings. We
summarize the features in two matrices

A =
[
a1 ... ad

]T
(3)

S =
[
s1 ... sp

]
. (4)

with dimensionalities d× c and c× p respectively. In order
to have the bias term bi in the model σ(bi + aT

i sj), we fixed
the last row of S to all ones. Then, the elements in the last
column of A play the role of the bias terms bi.

We express the likelihood of Y as a product of Bernoulli
distributions

L =
∏

ij∈O

σ(aT
i sj)yij (1− σ(aT

i sj))(1−yij) , (5)

where O denotes the set of elements in Y corresponding to
observed ratings. We use Gaussian priors for A and S to
make the solution less prone to overfitting:

P (skj) = N (0, 1) (6)
P (aik) = N (0, vk) (7)

i = 1, . . . , d ; k = 1, . . . , c ; j = 1, . . . , p .

Here we denote by N (µ, v) the Gaussian probability den-
sity function with mean µ and variance v. The prior vari-
ance for the elements in S is set to unity to fix the scaling
indeterminacy of the model. We use a separate hyperpa-
rameter vk for each column of A so that, if the number of
components c is chosen to be too large, unnecessary com-
ponents can go to zero when the corresponding vk is close
to zero. In practice we use a separate vk for different parts
of Y corresponding to matrices Xl, but we omit this detail
here to simplify the notation.

2.3. Learning

We use simple maximum a posteriori estimation for the model
parameters A, S, vk to make the method scale well to high-
dimensional problems. The logarithm of the posterior of the
unknown parameters is:

F =
∑
ij∈O

yij log σ(aT
i sj)

+
∑
ij∈O

(1− yij) log(1− σ(aT
i sj))

−
d∑

i=1

c∑
k=1

[1
2
log 2πvk +

1
2vk

a2
ik

]
−

c∑
k=1

p∑
j=1

[1
2
log 2π +

1
2
s2kj

]
(8)

We perform gradient-based maximization of F w.r.t. param-
eters A and S. The required derivatives are

∂F

∂ai
=
∑

j|ij∈O

sT
j (yij − σ(aT

i sj))− diag(1/vk)ai (9)

∂F

∂sj
=
∑

i|ij∈O

aT
i (yij − σ(aT

i sj))− sj , (10)



where diag(1/vk) is a diagonal matrix with 1/vk on the
main diagonal. Here we rely on the property of the sigmoid
function σ′ = σ(1− σ). We use the gradient-ascent update
rules

ai ← ai + α
∂F

∂ai
(11)

sk ← sk + α

√
p

d

∂F

∂sj
(12)

where the scaling
√
p/d accounts for the fact that the num-

ber of rows and columns in the data can significantly differ.
Such scaling is a crude but effective approximation of the
Newton’s method. We use a simple strategy of selecting the
learning rate: α is halved if the update leads to decrease of
F and α is increased by 20% on the next iteration if the
update is successful.

The variance parameters vk are point-estimated using a
simple update rule which maximizes F :

vk =
1
d

d∑
i=1

a2
ik (13)

2.4. Prediction

Once A and S have been estimated, one can compute the
probabilities for each element of matrices Xl using (1). We
can then transform the probabilities to the actual ratings
by first calculating the probability of each particular rating
value:

Px=1 = (1− x1)(1− x2)(1− x3)(1− x4) (14)
Px=2 = (1− x1)(1− x2)(1− x3)x4 (15)
Px=3 = (1− x1)(1− x2)x3x4 (16)
Px=4 = (1− x1)x2x3x4 (17)
Px=5 = x1x2x3x4 (18)

where x is one rating in matrix X, Px=r denotes the proba-
bility that x = r and xl (l = 1, . . . , 4) are the probabilities
computed for the corresponding elements in matrices Xl.
Then we estimate the rating as expectation

x̂ =
1Px=1 + 2Px=2 + 3Px=3 + 4Px=4 + 5Px=5

Px=1 + Px=2 + Px=3 + Px=4 + Px=5
. (19)

2.5. Comparison to PCA

What are the differences between binary PCA and appli-
cation of traditional PCA to binary data? Traditional PCA
corresponds to using the squared error (yij − aT

i sj)2 as the
learning criterion. Fig. 1 shows the loss function as a func-
tion of aT

i sj . There are two notable differences. Firstly, the
loss of binary PCA grows only linearly (instead of quadrat-
ically), so it is more robust against outliers (few data sam-
ples with bad reconstructions). Secondly, the loss of binary
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Fig. 1. Loss function − logP (yij) as a function of aT
i sj

in the case where the observation is 1 (solid line) or not
(dashed line). Left: Binary PCA. Right: Traditional PCA
(where binarization -1,1 is used for symmetry).

PCA is monotonic. Traditional PCA can generate predic-
tions outside of the valid range. When the prediction aT

i sj

is greater than 1, there is an incentive in the learning crite-
rion to change the prediction to the negative direction. This
is clearly undesired, and the monotonicity of binary PCA
avoids the effect. Such an effect can be observed in Fig. 3
where traditional PCA predicts ratings over 5 and below 1.

How about differences between the proposed approach
and traditional PCA for the ratings 1 to 5 without bina-
rization? The biggest difference is that the data matrix is
four times as large with the proposed approach. This in-
creases the number of parameters as the number of rows
in the matrix A is fourfold. The increase brings some ex-
pressive power. Consider for instance that some people (or
movies) tend to have mostly extreme ratings 1 and 5. The
binary model could find and make use of this effect, unlike
the traditional PCA model. On the other hand, the increased
number of parameters might cause overfitting and increases
computational complexity.

3. EXPERIMENTS

We implemented our method and tested it on two widely
used data sets for collaborative filtering: the MovieLens
100K and the Netflix data set. Both data sets contain integer
ratings with values 1 to 5. Other available information, such
as the titles of the movies, time of rating, data about users
were not used, although they might help the prediction task.

The algorithm was implemented in Matlab, using func-
tions for sparse matrices, with the most computationally
expensive components implemented in C++. The reported
running times were measured on a dual cpu AMD Opteron
SE 2220 machine.

3.1. MovieLens data

The MovieLens 100K data set from the GroupLens Research
Group at the University of Minnesota contains 100000 rat-
ings with values 1-to-5 given by 943 users on 1682 movies.



# components c Train rms Test rms
binary PCA, movies×users
10 0.8956 0.9248
binary PCA, users×movies
10 0.8449 0.9028
20 0.8413 0.9053
30 0.8577 0.9146

PCA, users×movies
10 0.7674 0.8905
20 0.7706 0.8892
30 0.7696 0.8880

Table 1. Performance obtained for MovieLens data

About 6.3% of all possible ratings are given. We randomly
split up the available ratings into a training set (95%) and a
test set (5%). We removed the 8 movies which do not have
any ratings in the training set as a result of the split.

First we ran our method on both the movies×users and
the transposed matrix (see Table 1). The table shows the
root mean square reconstruction error for the training set
and for the test set. We want to present how the choice
of the number of components affects the performance of
the method. We also test whether the use of the original
movies×users matrix or its transpose gives better results.
The main difference between these is the way the bias val-
ues are obtained (bias of each person or bias of each movie).
Having the users in the rows gives somewhat better results
as reported for other methods as well. Simple averaging of
the results from the original and transposed data with 10
components yielded a test error of 0.9014, which is slightly
better than either of the two. However, for a proper blending
of the results an additional validation set would be needed.
We compare the results with those obtained earlier using the
PCA with missing values method [4].

We tried the algorithm on MovieLens data using differ-
ent number c of latent components. We noticed that us-
ing too many components did not lead to serious overfitting
problems and the models with different c effectively used
similar numbers of components. This is the positive effect
of regularization. Using more than 10 components, which
was the optimal number for MovieLens, resulted in slower
convergence but the test error did not start to grow. The con-
vergence time was about 6 minutes for the 30-component
case.

Fig. 2 shows that the reconstruction error on binarized
data is a good indicator of the reconstruction error on 1-to-
5 ratings. There, we display the results of five runs with
different initializations for the model with 10 components.
Although the model converged to five different local min-
ima, the achieved performance is similar between the runs.

Finally, we compared the proposed binarization scheme
(see Section 2.1) with a more standard one when a single
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Fig. 2. Test rms error on binary data (x-axis) against the
test rms error on 1-to-5 ratings for the MovieLens data. The
scatter plots show intermediate results during learning for
five runs with different initializations. The circles represent
the solutions at the convergence.

binary digit is set to 1 for each rating value (i.e. 1→ 10000,
2 → 01000 and so on). The final error was significantly
larger: 1.0779 on the training set and 1.1062 on the test set.

In Fig. 3, we compare the predictions of the ratings given
by our method with the predictions obtained with our ear-
lier PCA model [4]. Even though the difference in total pre-
diction error is less than 2%, there seems to be significant
difference in the predictions. Therefore it is hoped that the
method captures different phenomena in the data than PCA.

Fig. 3. Predictions on the test set from the MovieLens data
using PCA (x-axis) and the binary PCA model (y-axis).



Method Probe rms Quiz subset
VBPCA, 50 components 0.9055 0.9070
BinPCA, 20 components 0.9381 0.9392

Blend 0.9046 0.9062

Table 2. Performance obtained for Netflix data

3.2. Netflix data

The Netflix data set contains ratings given by 480189 users
on 17770 movies. Only about 1.2% of the ratings are avail-
able, which are split up by the organizers as training and
probe set.

We ran the model with different number of components
using a 100-hour running time limit (see Fig. 4) and the
overall best result was obtained with just 20 components.
The obtained reconstruction rms errors when the model was
trained using the Netflix training set only are shown in Fig. 2.
Although the performance level obtained with the binary
PCA model (0.9392) was not as good as the one of the
PCA model (0.9070), blending the two approaches allowed
to improve the overall performance to 0.9062. Blending was
done by doing linear regression from the predictions of the
two models to the real ratings on the probing data. The
obtained coefficients were 0.8590 for PCA and 0.1369 for
binary PCA. Note that the numbers presented here can still
be improved if also the probing data is used for learning.
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Fig. 4. Running binary PCA on the Netflix data. The x-
axis shows running time in hours (linear between 0 and 1,
log-scale after 1). Training rms is shown above and probe
rms is shown below (both on binary digits). The test error is
not increasing at any point which indicates that there is no
overlearning.

In Fig. 5, we show predictions obtained with the model
for part of probing data in comparison with the true rat-
ings. One can see that the predicted matrices Xl are in good
agreement with the binarization scheme. It is notable that

the method very rarely predicts the rating 1. It is the least
common rating already in the data, but a conservative pre-
dictor avoids it even further.
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Fig. 5. A random sample of 5000 ratings in the Netflix prob-
ing data is sorted (from top to bottom) according to the bi-
nary PCA prediction. The images show the predicted rating,
the true rating, and the predicted binary probabilities for the
four digits (from left to right).

3.3. Computational complexity

Each iteration of the proposed algorithm takes O(Nc) op-
erations, where N = |O| is the number of observed values,
and assuming d < p < N . The costly operations are the
summations in Equations (8)–(10). There is only one al-
gorithm previously proposed for binary PCA with missing
values. Each iteration of it takes O(pdc2) operations [9].
For Netflix data and c = 20 features, this makes about a
thousandfold difference in our advantage.

4. DISCUSSION

We presented a method suitable for large-scale collabora-
tive filtering tasks. It is based on binarizing the ratings and
modeling them with binary PCA. The method seems to be
robust against overlearning even in problems with lots of
missing values. The results appear to be stable with respect
to restarts from random initializations.

The prediction performance obtained with the proposed
approach is slightly worse than our previous results obtained
with PCA [4]. However, the model seems to capture differ-
ent aspects of the data (see Fig. 3) and blending the pro-
posed approach with other models can improve the overall
results. We chose the used optimization algorithm for sim-
plicity. It would be a straightforward task to make the learn-
ing algorithm more efficient by using better ways to find the



Fig. 6. Scatter plot of the matrix A learned from the Netflix
data. Bottom left: The values from the four sub-parts (one
for each l) of the most prominent component of the A ma-
trix, plotted against each other. There are some correlations
clearly visible. Top right: Two most prominent components
of A plotted against each other, showing only the third sub-
part (l = 3). There is some non-Gaussian structure visible.

learning rate and by using for instance conjugate gradient
methods.

One way to extend the proposed model is to use a more
sophisticated prior for A and S. The most prominent effect
that we have ignored in the modeling, is the correlations
between the elements in the A matrix corresponding to dif-
ferent digits. These correlations are clearly visible in Fig. 6.
However, the prior model (7) that we use for A assumes that
all elements are independent. Furthermore, as one can see
from Fig. 6, there is some non-Gaussian structure that could
be modeled with a more complex prior.

Taking into account the posterior uncertainty, for ex-
ample by using variational Bayesian learning or sampling,
can help improve the accuracy of the model (see, e.g. [4]).
While this would increase the complexity (both mathemati-
cally and computationally), it could still be feasible even for
the Netflix problem. This is left as future work.
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