Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

László Kozma, Alexander Ilin, Tapani Raiko
first.last@tkk.fi

Helsinki University of Technology
Adaptive Informatics Research Center

Saarbrücken, 19th October 2009
Introduction

- **Recommender systems**
 - Predict user preference in order to offer more relevant items (Amazon.com, Netflix, iTunes Genius, Pandora)
 - *Content-based approach*: use similarity between items (e.g. book text, genre, title, author, actors in a movie, etc.)
 - *Collaborative filtering*: predict preferences from previous user-item relationships
Collaborative filtering: Netflix prize

- Netflix data set
 - Training set: 100,480,507 ratings from n = 480,189 users on m = 17,770 movies
 - Probe (test) set: 1,408,395 ratings are given for validation
 - Quiz set: 2,817,131 user/movie pairs with ratings withheld
 - Train, Probe, Quiz sets contain ratings from the same users and movies
 - Ratings from 1 to 5, time of voting provided
Collaborative filtering: Netflix prize

- Netflix prize competition
 - Score: RMSE on quiz set ratings, goal: 10% better RMSE than Cinematch (Netflix own algorithm trained on same data: 0.9514)
 - Leading solution: A blend of many methods (>100): k-NN, factorization (SVD), restricted Boltzmann machines and many other
 - http://www.netflixprize.com/
 - Robert M. Bell, Yehuda Koren and Chris Volinsky: The BellKor solution to the Netflix Prize
Collaborative filtering

can be formulated as missing value reconstruction:

\[
X_{n \times m} = \begin{bmatrix}
5 & 2 \\
2 & 2 & ? \\
3 & ? & 5 \\
1 & ? \\
? & 3 \\
5 & ?
\end{bmatrix}
\]

n = 480,189 users, m = 17,770 movies, 100,480,507 ratings (over 98% missing)
Singular Value Decomposition

• Rank-c approximation of ratings-matrix X:

$$X_{n \times m} \approx A_{n \times c} S_{c \times m}, \quad \min_{A,S} \|X - AS\|_F^2$$

• Since X is incomplete, the cost function is:

$$\sum_{(i,j) \in O} (x_{ij} - a_i^T s_j)^2 + \lambda (\|A\|_F^2 + \|S\|_F^2)$$

• The last term is added to avoid overfitting
• O is the set of observed ratings
• Unknown ratings are predicted as $x_{ij} = a_i^T s_j, (i,j) \notin O$
• Code:

 http://www.cis.hut.fi/alexilin/software
Logistic PCA

- Similar to SVD, but we use non-linearity:

\[P(y_{ij} = 1) = \sigma(a_i^T s_j) \] \hspace{1cm} (1)

- Sigmoid function:

\[\sigma(x) = \frac{1}{1 + e^{-x}} \] \hspace{1cm} (2)

- To avoid having a bias term, we fix the last row of \(S \) to all ones. Then, the elements in the last column of \(A \) play the role of the bias term.
Method

Binarizing Data

- Each rating value (1-5) encoded on 4 bits:

 1 → 0000
 2 → 0001
 3 → 0011
 4 → 0111
 5 → 1111

- We create 4 binary matrices from the original matrix of ratings
- Each element tells whether a rating is greater or smaller than a threshold
- Binarization scheme could be used also for continuous data
Method

\[
Y = \sigma(\text{components x people})
\]

4*movies x people

4*movies x components
Method

Logistic PCA

\[P(y_{ij} = 1) = \sigma(a_i^T s_j) \quad (3) \]

- Both \(A \) and \(S \) are unknown and have to be estimated to fit the available ratings.
- We express the likelihood as a product of Bernoulli distributions based on \(Y \)

\[L = \prod_{ij \in O} \sigma(a_i^T s_j)^{y_{ij}} (1 - \sigma(a_i^T s_j))^{(1-y_{ij})} \quad (4) \]

- \(O \) are the observed ratings in \(Y \)
Method

Regularization

- Maximum likelihood estimate prone to overfitting
- We use Gaussian priors for A and S

\[
P(s_{kj}) = \mathcal{N}(0, 1)
\]

\[
P(a_{ik}) = \mathcal{N}(0, v_k)
\]

\[i = 1, \ldots, m; \quad k = 1, \ldots, c; \quad j = 1, \ldots, n\]
Learning

We use MAP-estimation for the model parameters:

\[
F = \sum_{ij \in O} y_{ij} \log \sigma(a_i^T s_j) \\
+ \sum_{ij \in O} (1 - y_{ij}) \log(1 - \sigma(a_i^T s_j)) \\
- \sum_{i=1}^{m} \sum_{k=1}^{c} \left[\frac{1}{2} \log 2\pi v_k + \frac{1}{2v_k} a_{ik}^2 \right] \\
- \sum_{k=1}^{c} \sum_{j=1}^{n} \left[\frac{1}{2} \log 2\pi + \frac{1}{2} s_{kj}^2 \right]
\]

(5)
Method

Learning
The derivatives of the log-posterior:

\[
\frac{\partial F}{\partial a_i} = \sum_{j|ij \in O} s_j^T (y_{ij} - \sigma(a_i^s_j)) - \text{diag}(1/v_k)a_i \quad (6)
\]

\[
\frac{\partial F}{\partial s_j} = \sum_{i|i,j \in O} a_i^T (y_{ij} - \sigma(a_i^s_j)) - s_j , \quad (7)
\]

Gradient-ascent simultaneous update rules:

\[
a_i \leftarrow a_i + \alpha \frac{\partial F}{\partial a_i} \quad (8)
\]

\[
s_k \leftarrow s_k + \alpha \sqrt{\frac{m}{n}} \frac{\partial F}{\partial s_j} \quad (9)
\]
Method

Learning
Gradient-ascent update rules:

\[
\mathbf{a}_i \leftarrow \mathbf{a}_i + \alpha \frac{\partial F}{\partial \mathbf{a}_i} \\
\mathbf{s}_k \leftarrow \mathbf{s}_k + \alpha \sqrt{\frac{m}{n}} \frac{\partial F}{\partial \mathbf{s}_j}
\]

(10) (11)

• Scaling
• Update of the learning rate \(\alpha \): decrease by half if step unsuccessful, increase by 20% if successful
• Variance-parameters point-estimated to maximize \(F \):

\[
v_k = \frac{1}{d} \sum_{i=1}^{d} a_{ik}^2
\]

(12)
Method

- **Prediction**
 - We split $\sigma(a_j^T s_j)$ into X_1, X_2, X_3, X_4. The probability of each rating value is then:

 $P_{x=1} = (1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4)$ \hspace{1cm} (13)

 $P_{x=2} = (1 - x_1)(1 - x_2)(1 - x_3)x_4$ \hspace{1cm} (14)

 $P_{x=3} = (1 - x_1)(1 - x_2)x_3x_4$ \hspace{1cm} (15)

 $P_{x=4} = (1 - x_1)x_2x_3x_4$ \hspace{1cm} (16)

 $P_{x=5} = x_1x_2x_3x_4$ \hspace{1cm} (17)

 - We estimate the rating as expectation:

 $$\hat{x} = \frac{1P_{x=1} + 2P_{x=2} + 3P_{x=3} + 4P_{x=4} + 5P_{x=5}}{P_{x=1} + P_{x=2} + P_{x=3} + P_{x=4} + P_{x=5}}.$$ \hspace{1cm} (18)
Experiments: MovieLens

Table: Performance obtained for MovieLens 100K data

<table>
<thead>
<tr>
<th># components c</th>
<th>Train rms</th>
<th>Test rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary PCA, movies \times users</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.8956</td>
<td>0.9248</td>
</tr>
<tr>
<td>binary PCA, users \times movies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.8449</td>
<td>0.9028</td>
</tr>
<tr>
<td>20</td>
<td>0.8413</td>
<td>0.9053</td>
</tr>
<tr>
<td>30</td>
<td>0.8577</td>
<td>0.9146</td>
</tr>
<tr>
<td>VBPCA, users \times movies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.7674</td>
<td>0.8905</td>
</tr>
<tr>
<td>20</td>
<td>0.7706</td>
<td>0.8892</td>
</tr>
<tr>
<td>30</td>
<td>0.7696</td>
<td>0.8880</td>
</tr>
</tbody>
</table>
Experiments: MovieLens

Predictions on the test set with PCA (x-axis) and logistic PCA (y-axis):
Experiments: Netflix

<table>
<thead>
<tr>
<th>Method</th>
<th>Probe rms</th>
<th>Quiz subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBPCA, 50 components</td>
<td>0.9055</td>
<td>0.9070</td>
</tr>
<tr>
<td>BinPCA, 20 components</td>
<td>0.9381</td>
<td>0.9392</td>
</tr>
<tr>
<td>Blend</td>
<td>0.9046</td>
<td>0.9062</td>
</tr>
</tbody>
</table>

Table: Performance obtained for Netflix data

Training and test error:

![Graph showing training and test error for different methods](image-url)
Experiments: Netflix
Conclusions

• We introduced an algorithm for binary logistic PCA that scales well to very high dimensional and very sparse data
• We experimented on a large scale collaborative filtering task
• The method captures different aspects of the data than traditional PCA
• We list some possible improvements in the paper

• Questions?
Experiments: Netflix
Experiments: Netflix
Experiments: Netflix
Experiments: Netflix
Linear regression using least squares error on known ratings from probe set

\[
\begin{bmatrix}
\text{predictions of method 1} \\
\text{predictions of method 2}
\end{bmatrix}^\top \times \begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix} = \begin{bmatrix}
\text{probe set ratings}
\end{bmatrix}^\top
\]
Collaborative filtering

- A real recommender system
 - Low RMSE
 - Accuracy on top few picks
 - Easy to interpret
 - Speed of response
 - Update state (learn online)
 - Discover novel items
Implementation in Matlab

- Extension of SVD code from http://www.cis.hut.fi/alexilin/software
- Most critical parts (\(\text{sigmoid}()\), \(A \times S\)) implemented in C++, linked with mex library
- Use only sparse matrices, make sure they are never internally transformed into full matrices
 Example: \(Y = \text{spfun}(@(x) 1./x, Y);\)
- Three different values: \(\text{missing} \rightarrow 0, 0 \rightarrow \epsilon, 1 \rightarrow 1\)
- Minibatch: no need to keep whole \(Y\) in memory at all times, either load from disk in every iteration or recompute
Implementation

- We need to compute
 - $L_1 = \log(\sigma(x))$
 - $L_2 = \log(1 - \sigma(x))$
 - where $\sigma(x) = \frac{1}{1+e^{-x}}$
- For numerical stability we compute
 - if $(x >= 0)$
 - $L_1 = -\log(1 + e^{-x})$
 - $L_2 = -x + L_1$
 - if $(x < 0)$
 - $L_2 = -\log(1 + e^x)$
 - $L_1 = x + L_2$
Collaborative filtering

- Other ideas
 - Trouble with data: spam accounts, more people with same account
 - Use information about quiz data set: data is not missing (entirely) at random
 - Use external data: identify movies/users
 - Rating depending on time: influenced by previously seen movies
 - If we both hate *Titanic* which everyone liked, that tells more about our similar tastes than if we both liked it
 - etc.