Part II

Background
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătrașcu, SODA'09]
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătraşcu, SODA'09]

access sequence X

e.g. 4, 5, 6, 1, 2, 3
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătrașcu, SODA’09]

access sequence X
eq 4, 5, 6, 1, 2, 3

→ point set X
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătraşcu, SODA'09]

access sequence X
eq. 4, 5, 6, 1, 2, 3

\rightarrow point set X
access sequence X
eq 4, 5, 6, 1, 2, 3
→ point set X

BST algorithm serving X
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătrașcu, SODA'09]

access sequence X
eq. 4, 5, 6, 1, 2, 3
→ point set X

BST algorithm serving X
→ point set $Y \supseteq X$
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătraşcu, SODA'09]

access sequence X
eq \text{e.g. } 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set $Y \supseteq X$

↑ nodes touched by access and rotations at each time
access sequence X
eq 4, 5, 6, 1, 2, 3
→ point set X

BST algorithm serving X
→ point set $Y \supseteq X$

↑
nodes touched by access and rotations at each time

Y is a BST execution of $X \iff Y$ is a satisfied superset of X
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătrașcu, SODA'09]

access sequence X
eq 4, 5, 6, 1, 2, 3

\rightarrow point set X

BST algorithm serving X

\rightarrow point set $Y \supseteq X$

↑

nodes touched by access and rotations at each time

Y is a BST execution of X \iff Y is a satisfied superset of X
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătraşcu, SODA'09]

access sequence \(X\)
e.g. 4, 5, 6, 1, 2, 3

\[\rightarrow\] point set \(X\)

BST algorithm serving \(X\)

\[\rightarrow\] point set \(Y \supseteq X\)

↑
nodes touched by access and rotations at each time

\(Y\) is a BST execution of \(X\) \iff \(Y\) is a satisfied superset of \(X\)

\(\downarrow\)
no \(a, b \in Y\) form an empty rectangle
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătraşcu, SODA'09]

access sequence X
eq 4, 5, 6, 1, 2, 3

\rightarrow point set X

BST algorithm serving X

\rightarrow point set $Y \supseteq X$

\uparrow
nodes touched by access and rotations at each time

Y is a BST execution of $X \iff Y$ is a satisfied superset of X

no $a, b \in Y$ form an empty rectangle
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătraşcu, SODA'09]

access sequence X
eq 4, 5, 6, 1, 2, 3
→ point set X

BST algorithm serving X
→ point set $Y \supseteq X$

nodes touched by access and rotations at each time

Y is a BST execution of X \iff Y is a satisfied superset of X

no $a, b \in Y$ form an empty rectangle
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătrașcu, SODA'09]

access sequence X
eq 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set $Y \supseteq X$

↑

nodes touched by access and rotations at each time

Y is a BST execution of X \iff Y is a satisfied superset of X

no $a, b \in Y$ form an empty rectangle
\textbf{Greedy} \cite{Lucas'88, Munro'00, Demaine et al.'09}
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.
GREEDY [Lucas ’88; Munro ’00; Demaine et al. ’09]

GREEDY:
a natural offline BST algorithm.

In geometric view **GREEDY** becomes:
Greed y [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greed y:
a natural offline BST algorithm.

In geometric view **Greed y** becomes:

a natural **online** algorithm.
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural *online* algorithm.
(a simple geometric sweepline)
GREEDY [Lucas ’88; Munro ’00; Demaine et al. ’09]

GREEDY:
a natural offline BST algorithm.

In geometric view **GREEDY** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)
Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)
GREEDY [Lucas ’88; Munro ’00; Demaine et al. ’09]

GREEDY:

a natural offline BST algorithm.

In geometric view **GREEDY** becomes:

a natural **online** algorithm.

(a simple geometric sweepline)
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view **Greedy** becomes:

a natural **online** algorithm.
(a simple geometric sweepline)

Task: Bound the cost of **Greedy**
Greedy [Lucas ’88; Munro ’00; Demaine et al. ’09]

Greedy:
a natural offline BST algorithm.

In geometric view Greedy becomes:

a natural **online** algorithm.
(a simple geometric sweepline)

Task: Bound the cost of Greedy

\[\approx \# \text{ of points in the Greedy execution} \]
Forbidden Submatrix Theory

Studies patterns in $0/1$-matrices points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern $P = \Rightarrow |M| \leq n \cdot f_P(n)$.
Forbidden Submatrix Theory

A useful tool since the 50s.
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78]
[Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78] [Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92] [Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices.
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78] [Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92] [Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78]
[Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

Studies patterns in $0/1$-matrices
points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78]
[Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92]
[Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in $0/1$-matrices points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78]
[Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92]
[Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices
points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78]
[Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78] [Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92] [Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78] [Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92] [Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices points on a grid
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78]
[Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92]
[Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices
points on a grid

How many points can we have while avoiding some pattern?
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78]
[Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in $0/1$-matrices
points on a grid

Theorems of the form:
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78]
[Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92]
[Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

\(M \) is a set of points on the \(n \)-by-\(n \) grid avoiding pattern \(P \)
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78]
[Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in $0/1$-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

\[\implies |M| \leq n \cdot f_P(n). \]
Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán ’55] [Bollobás, Erdős ’78] [Hart, Sharir ’86] [Bienstock, Győri, ’91] [Füredi, Hajnal ’92] [Marcus, Tardos ’04] [Pettie ’10]

Studies patterns in $0/1$-matrices

points on a grid

Subsumes the pattern-avoidance mentioned earlier:

\[
\begin{array}{cccc} 1 & 3 & 4 & 5 \\ 2 & & & \\ \end{array}
\] contains \(231\)

Theorems of the form:

\[M\] is a set of points on the \(n\)-by-\(n\) grid avoiding pattern \(P\)

\[\implies |M| \leq n \cdot f_P(n).\]
... back to Greedy
... back to Greedy

We bounded the cost of Greedy using forbidden submatrix theory.

A (correct) Lemma: proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence: if \(X \) avoids \((\bullet \bullet \bullet)\) \(\Rightarrow \) Greedy execution avoids

\[
\begin{pmatrix}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{pmatrix}
\]

\(\Rightarrow \) cost of Greedy on \(X \) is at most \(n \cdot 2^{\text{poly}(\alpha(n))} \)

using [Klazar '00] [Keszegh '09] [Pettie '15]
... back to **GREEDY**

We bound the cost of **GREEDY** using forbidden submatrix theory.
... back to **GREEDY**

We bound the cost of **GREEDY** using forbidden submatrix theory.

A first (WRONG) conjecture:

![Diagram showing time vs. keys with various points plotted.](image-url)
... back to Greedy

We bound the cost of Greedy using forbidden submatrix theory.

A first (WRONG) conjecture:

If X avoids P

\implies Greedy execution avoids P

We call this the input-revealing property of Greedy.

Consequence:

If X avoids P

\implies Greedy execution avoids P

\implies cost of Greedy on X is at most $n \cdot 2^{poly(\alpha(n))}$

\[\text{keys} \quad \text{time}\]

\[\text{keys} \quad \text{time}\]
... back to **GREEDY**

We bound the cost of **GREEDY** using forbidden submatrix theory.

A first *(WRONG)* conjecture:

If X avoids $(\bullet \bullet \bullet)$

$$\implies \text{GREEDY execution avoids } (\bullet \bullet \bullet)$$
... back to **GREEDY**

We bound the cost of **GREEDY** using forbidden submatrix theory.

If **GREEDY** execution contains the pattern:

![Pattern Diagram]

A (correct) **Lemma:**

If execution contains the pattern:

We call this the input-revealing property of **GREEDY**.

Consequence:

if \(X \) avoids \((1 3 2)\) ⇒ **GREEDY** execution avoids

\[
\begin{bmatrix}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{bmatrix}
\]

⇒ cost of **GREEDY** on \(X \) is at most \(n \cdot 2^\alpha(n) \)

using \([Klazar '00]\) \([Keszegh '09]\) \([Pettie '15]\)
... back to Greedy

We bound the cost of Greedy using forbidden submatrix theory.

drawn must be an access point inside

A (correct) Lemma:
... back to Greedy

We bound the cost of Greedy using forbidden submatrix theory.

A (correct) Lemma:
... back to \textsc{Greedy}

We bound the cost of \textsc{Greedy} using forbidden submatrix theory.

A (correct) \textbf{Lemma}:
... back to **GREEDY**

We bound the cost of **GREEDY** using forbidden submatrix theory.

A (correct) **Lemma**: proof very easy (but skipped).

We call this the **input-revealing** property of **GREEDY**.

Consequence:
... back to GREEDY

We bound the cost of GREEDY using forbidden submatrix theory.

A (correct) Lemma: proof very easy (but skipped).

We call this the input-revealing property of GREEDY.

Consequence:
... back to **Greedy**

We bound the cost of **Greedy** using forbidden submatrix theory.

A (correct) **Lemma:**
proof very easy (but skipped).

We call this the **input-revealing** property of **Greedy**.

Consequence:
... back to \textsc{Greedy}

We bound the cost of \textsc{Greedy} using forbidden submatrix theory.

A (correct) \textbf{Lemma}:
proof very easy (but skipped).

We call this the \textit{input-revealing} property of \textsc{Greedy}.

\textbf{Consequence}:
... back to **GREEDY**

We bound the cost of **GREEDY** using forbidden submatrix theory.

A (correct) **Lemma**: proof very easy (but skipped).

We call this the **input-revealing** property of **GREEDY**.

Consequence:
... back to \textsc{Greedy}

We bound the cost of \textsc{Greedy} using forbidden submatrix theory.

A (correct) \textbf{Lemma}:
proof very easy (but skipped).

We call this the \textit{input-revealing} property of \textsc{Greedy}.

\textbf{Consequence}:

if X avoids $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
... back to \textsc{Greedy}

We bound the cost of \textsc{Greedy} using forbidden submatrix theory.

A (correct) \textbf{Lemma}: proof very easy (but skipped).

We call this the \textit{input-revealing} property of \textsc{Greedy}.

\textbf{Consequence}:

if X avoids $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$

\implies \textsc{Greedy} execution avoids $\begin{pmatrix} \bullet & \bullet & \bullet \bullet \bullet \end{pmatrix}$
... back to GREEDY

We bound the cost of GREEDY using forbidden submatrix theory.

A (correct) Lemma: proof very easy (but skipped).

We call this the input-revealing property of GREEDY.

Consequence:

if X avoids $\left(\begin{array}{ll} 1 & 3 \\ 2 & \end{array} \right)$

\implies GREEDY execution avoids $\left(\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \right)$

\implies cost of GREEDY on X is at most $n \cdot 2^{\alpha(n)}$

using [Klazar ’00] [Keszegh ’09] [Pettie ’15]
We bound the cost of \textsc{Greedy} using forbidden submatrix theory.

A (correct) \textbf{Lemma}: proof very easy (but skipped).

\textbf{Consequence:}

if X avoids P

\implies \textsc{Greedy} execution avoids $P \otimes (\bullet \bullet \bullet)$

\implies cost of \textsc{Greedy} on X is $n \cdot 2^{\alpha(n)O(|P|)}$
We bound the cost of Greedy using forbidden submatrix theory.

A (correct) Lemma: proof very easy (but skipped).

Consequence:
if X avoids P

\implies Greedy execution avoids $P \otimes (\cdot \cdot \cdot)$

\implies cost of Greedy on X is $n \cdot 2^{\alpha(n)}O(|P|)$

\rightarrow for various special cases we prove stronger bounds, i.e. $O(n)$

proofs more difficult
A different application of the technique...
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]
→ Lower bound on the cost of any BST algorithm
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm
→ Conjectured to be $\Theta(OPT)$
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be $\Theta(\text{OPT})$

We show:
If X avoids P, then IR-bound for X is $O(n)$, for any constant-sized P.
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be $\Theta(OPT)$

We show:
If X avoids P, then IR-bound for X is $O(n)$, for any constant-sized P.

\[
\begin{array}{c|c|c}
\text{IR-bound} & \text{OPT} & \text{GREEDY} \\
\hline
O(n) & ?? & n \cdot f(\alpha(n)) \\
\end{array}
\]
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be \(\Theta(OPT) \)

We show:
If \(X \) avoids \(P \), then \textbf{IR-bound} for \(X \) is \(O(n) \), for any constant-sized \(P \).

\[\begin{array}{c}
\text{IR-bound} & \text{OPT} & \text{GREEDY} \\
O(n) & ?? & n \cdot f(\alpha(n))
\end{array} \]

Consequence:
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be $\Theta(OPT)$

We show:
If X avoids P, then IR-bound for X is $O(n)$, for any constant-sized P.

Consequence: “something’s gotta give…” 🎶🎵🎵
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]
→ Lower bound on the cost of any BST algorithm
→ Conjectured to be $\Theta(OPT)$

We show:
If X avoids P, then IR-bound for X is $O(n)$, for any constant-sized P.

Consequence: “something’s gotta give ...”

? Greedy is in fact linear on all pattern-avoiding input
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm
→ Conjectured to be $\Theta(OPT)$

We show:
If X avoids P, then IR-bound for X is $O(n)$, for any constant-sized P.

<table>
<thead>
<tr>
<th>IR-bound</th>
<th>OPT</th>
<th>GREEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>??</td>
<td>$n \cdot f(\alpha(n))$</td>
</tr>
</tbody>
</table>

Consequence: “something’s gotta give ...” ♫ ♫ ♫

?? GREEDY is in fact linear on all pattern-avoiding input
?? GREEDY is not $O(1)$-competitive
A different application of the technique...

Independent Rectangle bound [Demaine et al. ’09] [Wilber ’89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P, then IR-bound for X is $O(n)$, for any constant-sized P.

\[
\begin{array}{ccc}
\text{IR-bound} & \text{OPT} & \text{GREEDY} \\
O(n) & ?? & n \cdot f(\alpha(n))
\end{array}
\]

Consequence: “something’s gotta give ...”

- Greedy is in fact linear on all pattern-avoiding input
- Greedy is not $O(1)$-competitive
- Conjecture is false (IR-bound not tight)
Conclusion:
Conclusion:

On inputs that avoid an arbitrary pattern, \textsc{Greedy} is linear

*
Conclusion:

On inputs that avoid an arbitrary pattern, \texttt{GREEDY} is linear*

For traversal conjecture, \texttt{GREEDY} is linear*†
Conclusion:

On inputs that avoid an arbitrary pattern, \texttt{GREEDY} is linear \(^*\)

For traversal conjecture, \texttt{GREEDY} is linear \(^*†\)

\(^*\) up to \(f(\alpha(n))\) factor, \textbf{or} \n
\(^†\) with preprocessing
Conclusion:

On inputs that avoid an arbitrary pattern, \texttt{GREEDY} is linear°

For traversal conjecture, \texttt{GREEDY} is linear°†

° up to \(f(\alpha(n)) \) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Conclusion:

On inputs that avoid an arbitrary pattern, **GREEDY** is linear

For traversal conjecture, **GREEDY** is linear

* up to $f(\alpha(n))$ factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a **path**
Conclusion:

On inputs that avoid an arbitrary pattern, \textsc{Greedy} is linear*

For traversal conjecture, \textsc{Greedy} is linear*†

* up to $f(\alpha(n))$ factor, or
$†$ with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.
Conclusion:

On inputs that avoid an arbitrary pattern, GREEDY is linear

For traversal conjecture, GREEDY is linear

* up to $f(\alpha(n))$ factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path sequence avoiding both 231 and 213.

Open Question 2
Prove $o(\log(n))$-competitiveness for GREEDY or Splay Tree, or $o(\log \log(n))$-competitiveness for any algorithm.
Conclusion:

On inputs that avoid an arbitrary pattern, \texttt{GREEDY} is linear*

For traversal conjecture, \texttt{GREEDY} is linear*†

* up to $f(\alpha(n))$ factor, or
† with preprocessing

\textbf{Open Question 1}
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path \rightarrow sequence avoiding both 231 and 213.

\textbf{Open Question 2}
Conclusion:

On inputs that avoid an arbitrary pattern, \texttt{GREEDY} is linear\(^*\)

For traversal conjecture, \texttt{GREEDY} is linear\(^{\dagger}\)

\(^*\) up to \(f(\alpha(n))\) factor, or

\(^{\dagger}\) with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path \(\rightarrow\) sequence avoiding both 231 and 213.

Open Question 2
Prove \(o(\log(n))\)-competitiveness for \texttt{GREEDY} or Splay Tree, or
Conclusion:

On inputs that avoid an arbitrary pattern, GREEDY is linear

For traversal conjecture, GREEDY is linear *

* up to $f(\alpha(n))$ factor, or

† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a path \rightarrow sequence avoiding both 231 and 213.

Open Question 2
Prove $o(\log(n))$-competitiveness for GREEDY or Splay Tree, or $o(\log \log(n))$-competitiveness for any algorithm.