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GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of GREEDY

1

time

~ # of points in the GREEDY execution

[oN Ne)
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o OO0
oce
oe
[ J
'keys
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Forbidden Submatrix Theory

A useful tool since the 50s. Subsumes the pattern-avoidance mentioned earlier:

[Zarankiewicz 1951] [Kévari, Sés, 134562  contains 231
Turan '55] [Bollobas, Erdés '78] ®
[Hart, Sharir '86] [Bienstock, °
Gyé6ri, '91] [Fiiredi, Hajnal '92] )
[Marcus, Tardos '04] [Pettie '10] ()

Studies patterns in 8/-matrices L4

points on a grid

Theorems of the form:
M is a set of points on the n-by-n grid avoiding pattern P

= |M| <n-fp(n).
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We bound the cost of GREEDY using

forbidden submatrix theory.

A (correct) Lemma:
proof very easy (but skipped).

Consequence:
if X avoids P

= GREEDY execution avoids P ® (4 *,)

. NO(|P
— cost of GremDY on X is n - 20(m)UFD

— for various special cases we prove stronger bounds, i.e. O(n)

proofs more difficult
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— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY

- ‘V Tt
O(n) ?7? n- f(a(n))
Consequence: “something’s gotta give ...”  MJ &

(@ GREEDY is in fact linear on all pattern-avoiding input
(@ GREEDY is not O(1)-competitive
(@ Conjecture is false (IR-bound not tight)
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Open Question 2
Prove o(log(n))-competitiveness for GREEDY or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.



