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Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]
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Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution
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Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).
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... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
( •
•
•

)
=⇒ Greedy execution avoids

( •
•
•

)
A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]
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A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT )

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .
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?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive
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Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.
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Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.
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