Part I

Background

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X
eg.4,56,1,2,3

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X
eg.4,56,1,2,3

— point set X

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time
eg.4,56,1,2,3

— point set X [J

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time
eg.4,56,1,2,3

— point set X [J

BST algorithm serving X Y

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time
eg.4,56,1,2,3 oe
— point set X ce
00O O
BST algorithm serving X Y
— pointset Y DO X ceo
[J

keys

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time

eg.4,56,1,2,3 oe

— point set X ce

€000 O
BST algorithm serving X Y

— pointset Y DO X ceo

T []
nodes touched by access and >
rotations at each time keys

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time

eg.4,56,1,2,3 oe

— point set X oce

€000 O
BST algorithm serving X °

— pointset Y DO X ceo

T []
nodes touched by access and >
rotations at each time keys

Y is a BST execution of X <= Y is a satisfied superset of X

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time

eg.4,56,1,2,3 oe

— point set X ce

€000 O
BST algorithm serving X Y

— pointset Y DO X ceo

T []
nodes touched by access and >
rotations at each time keys

Y is a BST execution of X <= Y is a satisfied superset of X

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time

eg.4,56,1,2,3 oe

— point set X ce

€000 O
BST algorithm serving X Y

— pointset Y DO X ceo

T []
nodes touched by access and >
rotations at each time keys

Y is a BST execution of X <= Y is a satisfied superset of X
+

no a,b € Y form an empty rectangle

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time

eg.4,56,1,2,3 oe

— point set X ce

€000 O
BST algorithm serving X Y

— pointset Y DO X ceo

T []
nodes touched by access and >
rotations at each time keys

Y is a BST execution of X <= Y is a satisfied superset of X
+

no a,b € Y form an empty rectangle

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time
eg.4,56,1,2,3

— point set X ce

BST algorithm serving X

— pointset Y DO X e @.O

T []
nodes touched by access and >
rotations at each time keys

Y is a BST execution of X <= Y is a satisfied superset of X
+

no a,b € Y form an empty rectangle

Geometry of BST [Demaine, Harmon, lacono, Kane, Patrascu, SODA'09]

access sequence X time
eg.4,56,1,2, 3 A o®

— point set X ce

BST algorithm serving X

— pointset Y DO X ceo

T []
nodes touched by access and >
rotations at each time keys

Y is a BST execution of X <= Y is a satisfied superset of X
+

no a,b € Y form an empty rectangle

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

time

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY: time
a natural offline BST algorithm. A °

In geometric view GREEDY []
becomes: Py

a natural online algorithm.

(a simple geometric sweepline) @

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:

a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

time

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:

a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

time

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY: time
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY: time

a natural offline BST algorithm. A °

In geometric view GREEDY O O D
becomes: el 5o

a natural online algorithm. ce

(a simple geometric sweepline) oe

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:

a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

time

""""" OO
0 @-i--0
° 0o
oce
oe
°

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of GREEDY

time

[oN Ne)
ce O
o OO0
oce
oe
[J
'keys

GREEDY [Lucas '88; Munro '00; Demaine et al. '09]

GREEDY:
a natural offline BST algorithm.

In geometric view GREEDY
becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of GREEDY

1

time

~ # of points in the GREEDY execution

[oN Ne)
ce O
o OO0
oce
oe
[J
'keys

Forbidden Submatrix Theory

Forbidden Submatrix Theory

A useful tool since the 50s.

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erd8s '78]
[Hart, Sharir '86] [Bienstock,
Gyéri, '91] [Firedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices.

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K&vari, Sés, XX)

Turan '55] [Bollobas, Erdés '78] oo o

[Hart, Sharir '86] [Bienstock,

Gy6ri, '91] [Furedi, Hajnal '92] d oo

[Marcus, Tardos '04] [Pettie '10] oo
[N]

Studies patterns in 6/1-matrices []

points on a grid

How many points can we have while avoiding some pattern?

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos,
Turan '55] [Bollobas, Erdés '78]
[Hart, Sharir '86] [Bienstock,
Gy6ri, '91] [Furedi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 8/1-matrices

points on a grid

Theorems of the form:

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos, (X N}

Turan '55] [Bollobas, Erdés '78] e o

[Hart, Sharir '86] [Bienstock,

Gy6ri, '91] [Furedi, Hajnal '92] d oo

[Marcus, Tardos '04] [Pettie '10] oo
o0

Studies patterns in 8/1-matrices [)

points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [Kévari, Sos, (X N}

Turan '55] [Bollobas, Erdés '78] e o

[Hart, Sharir '86] [Bienstock,

Gy6ri, '91] [Furedi, Hajnal '92] d oo

[Marcus, Tardos '04] [Pettie '10] oo
o0

Studies patterns in 8/1-matrices [)

points on a grid

Theorems of the form:
M is a set of points on the n-by-n grid avoiding pattern P

= |M| <n-fp(n).

Forbidden Submatrix Theory

A useful tool since the 50s. Subsumes the pattern-avoidance mentioned earlier:

[Zarankiewicz 1951] [Kévari, Sés, 134562 contains 231
Turan '55] [Bollobas, Erdés '78] ®
[Hart, Sharir '86] [Bienstock, °
Gyé6ri, '91] [Fiiredi, Hajnal '92])
[Marcus, Tardos '04] [Pettie '10] ()

Studies patterns in 8/-matrices L4

points on a grid

Theorems of the form:
M is a set of points on the n-by-n grid avoiding pattern P

= |M| <n-fp(n).

... back to GREEDY

... back to GREEDY

time

A COe®eo0
ce O
® (ONe}
oce
ce
[]

keys

... back to GREEDY

We bound the cost of GREEDY using time
forbidden submatrix theory. A 0eo
o e O
® o0
oe
ocoe
{

keys

... back to GREEDY

We bound the cost of GREEDY using time
forbidden submatrix theory. A ceo
A first (WRONG) conjecture: coe O
® o0
ce
oce
[

keys

... back to GREEDY

We bound the cost of GREEDY using time‘
. . \
forbidden submatrix theory. ceo
A first (WRONG) conjecture: coe O
If X avoids P o 00
=—> GREEDY execution avoids P ce
ocoe
{

keys

... back to GREEDY

We bound the cost of GREEDY using
forbidden submatrix theory.

A first (WRONG) conjecture:

If X avoids ('-)

—> GREEDY execution avoids (

time

Oeo

ce O

° Oo
O e
oe
°

keys

... back to GREEDY
We bound the cost of GREEDY using

forbidden submatrix theory.
If GREEDY execution contains the pattern:

A (correct) Lemma:

... back to GREEDY

We bound the cost of GREEDY using
forbidden submatrix theory. there must be an access point inside

A (correct) Lemma:

... back to GREEDY

We bound the cost of GREEDY using
forbidden submatrix theory. there must be an access point inside

"""""" i maybe here
S

A (correct) Lemma:

... back to GREEDY

We bound the cost of GREEDY using
forbidden submatrix theory.

A (correct) Lemma:

... back to GREEDY

We bound the cost of GREEDY using
forbidden submatrix theory.

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of GREEDY.

Consequence:

... back to GREEDY

We bound the cost of GREEDY using
forbidden submatrix theory.

A (correct) Lemma: R .
proof very easy (but skipped). i

We call this the input-revealing property of GREEDY.

Consequence:

... back to GREEDY

We bound the cost of GREEDY using

forbidden submatrix theory. : O
0 ® o
o
i @ |
o0
A (correct) Lemma: G T i
proof very easy (but skipped). EO. Oi

We call this the input-revealing property of GREEDY.

Consequence:

... back to GREEDY

We bound the cost of GREEDY using P mmemmee
forbidden submatrix theory.

A (correct) Lemma: o
proof very easy (but skipped).

We call this the input-revealing property of GREEDY.

Consequence:

... back to GREEDY

We bound the cost of GREEDY using Fmm e

forbidden submatrix theory. S ,
o® o ¥

o i

(I

o o

A (correct) Lemma: o i i
proof very easy (but skipped). O. - :

We call this the input-revealing property of GREEDY.

Consequence:

... back to GREEDY

We bound the cost of GREEDY using Fmm e

forbidden submatrix theory. S ,
o® o ¥

o i

(I

o o

A (correct) Lemma: o i i
proof very easy (but skipped). O. - :

We call this the input-revealing property of GREEDY.

Consequence:

if X avoids (123)

... back to GREEDY

We bound the cost of GREEDY using Fmm e

forbidden submatrix theory. S ,
o® o ¥

o i

(I

o o

A (correct) Lemma: o i i
proof very easy (but skipped). O. - :

We call this the input-revealing property of GREEDY.

Consequence:
if X avoids (1) 3)

—> GREEDY execution avoids o e

... back to GREEDY

We bound the cost of GREEDY using Fmm e

forbidden submatrix theory. O ,
o® o ¥

o i

(I

o o

A (correct) Lemma: o i i
proof very easy (but skipped). O. - :

We call this the input-revealing property of GREEDY.

Consequence:
if X avoids (1) 3)

—> GREEDY execution avoids o e

— cost of GREEDY on X is at most n - 2POIY(a(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

We bound the cost of GREEDY using Fmmmmmmmmmmm e

forbidden submatrix theory. S ,
o® o ¥

o i

(I

o o

A (correct) Lemma: o i i
proof very easy (but skipped). O. - !

Consequence:
if X avoids P

—> GREEDY execution avoids P ® (4 ®)

— cost of GREEDY on X is n - 20<n)o(|m)

We bound the cost of GREEDY using

forbidden submatrix theory.

A (correct) Lemma:
proof very easy (but skipped).

Consequence:
if X avoids P

= GREEDY execution avoids P ® (4 *,)

. NO(|P
— cost of GremDY on X is n - 20(m)UFD

— for various special cases we prove stronger bounds, i.e. O(n)

proofs more difficult

A different application of the technique...

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]

— Lower bound on the cost of any BST algorithm

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY
PRI DN

A
O(n) 2?2 0 f(am)

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY
PO RN

A
O(n) 2?2 0 f(am)

Consequence:

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY
PO RN

A
O(n) 2?2 0 f(am)

Consequence: “something’s gotta give ...” MJ &

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY

- ‘V Tt
O(n) ?7? n- f(a(n))
Consequence: “something’s gotta give ...” MJ &

(@ GREEDY is in fact linear on all pattern-avoiding input

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY

- ‘V Tt
O(n) ?7? n- f(a(n))
Consequence: “something’s gotta give ...” MJ &

(@ GREEDY is in fact linear on all pattern-avoiding input

(@ GREEDY is not O(1)-competitive

A different application of the technique...
Independent Rectangle bound [Demaine et al. "09] [Wilber '89]
— Lower bound on the cost of any BST algorithm

— Conjectured to be ©(OPT)

We show:
If X avoids P, then IR-bound for X is O(n), for any constant-sized P.

IR-bound OPT GREEDY

- ‘V Tt
O(n) ?7? n- f(a(n))
Consequence: “something’s gotta give ...” MJ &

(@ GREEDY is in fact linear on all pattern-avoiding input
(@ GREEDY is not O(1)-competitive
(@ Conjecture is false (IR-bound not tight)

Conclusion:

Conclusion:

On inputs that avoid an arbitrary pattern, GREEDY is linear’

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

. . . *T
For traversal conjecture, GREEDY is linear

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

. . . *T
For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear
*up to f(a(n)) factor, or

with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path — sequence avoiding both 231 and 213.

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm.

Even for preorder sequence of a path — sequence avoiding both 231 and 213.

1\8 e
/

/ P [

\

)

5 12345678

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path — sequence avoiding both 231 and 213.

1
\/s ..
7 .
2\/ —a ..
3, .
\
\
N . ®
s/ 12345678

Open Question 2

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm.

Even for preorder sequence of a path — sequence avoiding both 231 and 213.
1

—, .
/
7 .
2\/ —a .
3, .
\
\
N . °
s/ 12345678

Open Question 2
Prove o(log(n))-competitiveness for GREEDY or Splay Tree, or

Conclusion:
On inputs that avoid an arbitrary pattern, GREEDY is linear’

For traversal conjecture, GREEDY is linear

*up to f(a(n)) factor, or
with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path — sequence avoiding both 231 and 213.

1
\/s ..
7 .
2\/ —a .
3, .
\
\
N . °
s/ 12345678

Open Question 2
Prove o(log(n))-competitiveness for GREEDY or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

