Part II Background

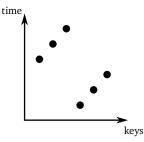
access sequence X e.g. 4, 5, 6, 1, 2, 3

access sequence X e.g. 4, 5, 6, 1, 2, 3

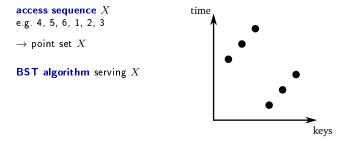
 \rightarrow point set X

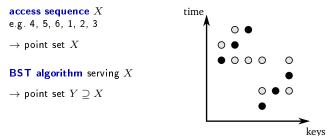
access sequence X e.g. 4, 5, 6, 1, 2, 3

 \rightarrow point set X

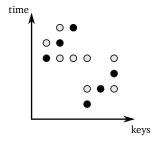


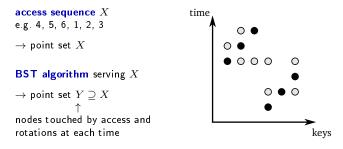
Geometry of BST [Demaine, Harmon, Iacono, Kane, Pătrașcu, SODA'09]



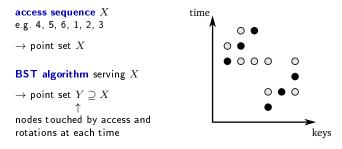


access sequence X e.g. 4, 5, 6, 1, 2, 3 \rightarrow point set X BST algorithm serving X \rightarrow point set $Y \supseteq X$ \uparrow nodes touched by access and rotations at each time

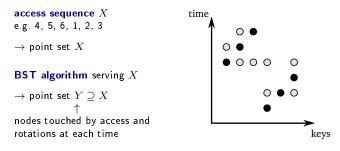




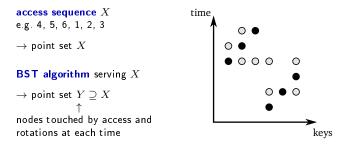
Y is a BST execution of $X \iff Y$ is a satisfied superset of X



Y is a BST execution of $X \iff Y$ is a satisfied superset of X



 $\begin{array}{l} Y \text{ is a BST execution of } X \iff Y \text{ is a satisfied superset of } X \\ & \downarrow \\ & \text{no } a, b \in Y \text{ form an empty rectangle} \end{array}$

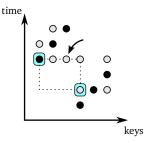


 $\begin{array}{c} Y \text{ is a BST execution of } X \iff Y \text{ is a satisfied superset of } X \\ & \downarrow \\ & \texttt{no} \ a, b \in Y \text{ form an empty rectangle} \end{array}$

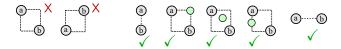
access sequence Xe.g. 4, 5, 6, 1, 2, 3 \rightarrow point set X

BST algorithm serving X \rightarrow point set $Y \supseteq X$ \uparrow nodes touched by access and

rotations at each time



 $\begin{array}{c} Y \text{ is a BST execution of } X \iff Y \text{ is a satisfied superset of } X \\ & \downarrow \\ & \mathsf{no} \ a, b \in Y \text{ form an empty rectangle} \end{array}$



 $\begin{array}{c} Y \text{ is a BST execution of } X \iff Y \text{ is a satisfied superset of } X \\ & \downarrow \\ & \mathsf{no} \ a, b \in Y \text{ form an empty rectangle} \end{array}$

 $G_{\mbox{\scriptsize REEDY}}$ a natural offline BST algorithm.

 $G_{\mbox{\scriptsize REEDY}}$ a natural offline BST algorithm.

In geometric view GREEDY becomes:

 $G_{\mbox{\scriptsize REEDY}}$ a natural offline BST algorithm.

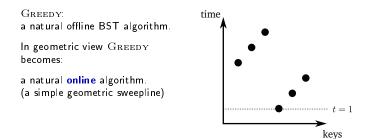
In geometric view GREEDY becomes:

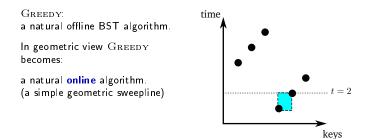
a natural online algorithm.

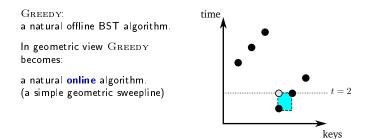
 $G_{\mbox{\scriptsize REEDY}}$ a natural offline BST algorithm.

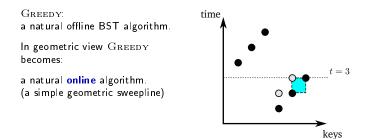
In geometric view GREEDY becomes:

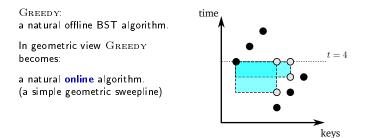
```
a natural online algorithm.
(a simple geometric sweepline)
```

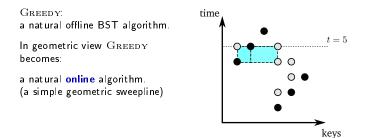


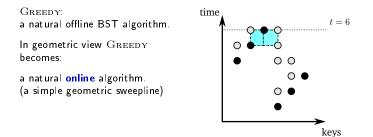


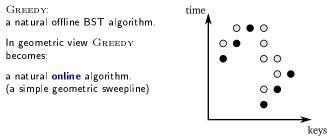




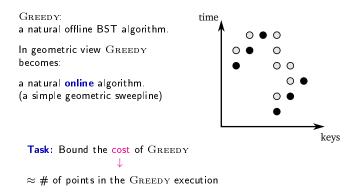








Task: Bound the cost of GREEDY



A useful tool since the 50s.

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

A useful tool since the 50s.

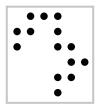
[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices.

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

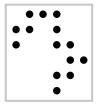
Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

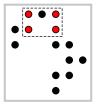
Studies patterns in $\frac{0}{1}$ -matrices points on a grid



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

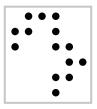
Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

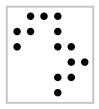
Studies patterns in $\frac{0}{1}$ -matrices points on a grid



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

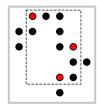
Studies patterns in $\frac{0}{1}$ -matrices points on a grid



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid



A useful tool since the 50s.

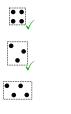
[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

Studies patterns in $\frac{0}{1}$ -matrices points on a grid

A useful tool since the 50s.

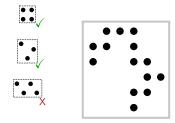
[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]



Studies patterns in $\frac{0}{1}$ matrices points on a grid

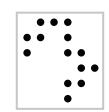
How many points can we have while avoiding some pattern?

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]

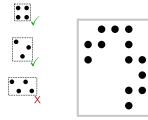
Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid

Theorems of the form:



A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]



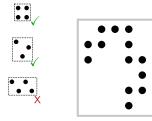
Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid

Theorems of the form:

M is a set of points on the $n\mbox{-}{\rm by}\mbox{-}n$ grid avoiding pattern P

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10]



Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid

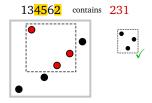
Theorems of the form:

M is a set of points on the $n\mbox{-}{\rm by}\mbox{-}n$ grid avoiding pattern P

$$\implies |M| \le n \cdot \mathbf{f}_{\mathbf{P}}(\mathbf{n}).$$

A useful tool since the 50s.

[Zarankiewicz 1951] [Kővári, Sós, Turán '55] [Bollobás, Erdős '78] [Hart, Sharir '86] [Bienstock, Győri, '91] [Füredi, Hajnal '92] [Marcus, Tardos '04] [Pettie '10] Subsumes the pattern-avoidance mentioned earlier:



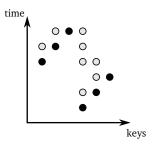
Studies patterns in $\frac{0}{1-\text{matrices}}$ points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

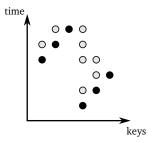
$$\implies |M| \le n \cdot \mathbf{f}_{\mathbf{P}}(\mathbf{n})$$

\dots back to GREEDY



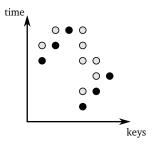
 \ldots back to $\ensuremath{\operatorname{GREEDY}}$

We bound the cost of \mathbf{GREEDY} using forbidden submatrix theory.



We bound the cost of \mathbf{GREEDY} using forbidden submatrix theory.

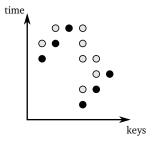
A first (WRONG) conjecture:



We bound the cost of \mathbf{GREEDY} using forbidden submatrix theory.

A first (WRONG) conjecture:

- If X avoids \boldsymbol{P}
 - \implies Greedy execution avoids P

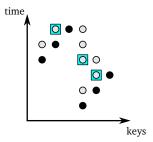


We bound the cost of Greedy using forbidden submatrix theory.

A first (WRONG) conjecture:

If X avoids
$$\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$$

 \implies Greedy execution avoids $\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$



We bound the cost of $\ensuremath{\operatorname{GREEDY}}$ using forbidden submatrix theory.

If GREEDY execution contains the pattern:

We bound the cost of \mathbf{GREEDY} using forbidden submatrix theory.

there must be an access point inside

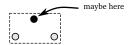
We bound the cost of Greedy using forbidden submatrix theory.

there must be an access point inside

maybe here 0 IO

 \ldots back to $\ensuremath{\operatorname{GREEDY}}$

We bound the cost of Greedy using forbidden submatrix theory.



 \dots back to GREEDY

We bound the cost of GREEDY using forbidden submatrix theory.

A (correct) **Lemma**: proof very easy (but skipped).

We call this the input-revealing property of GREEDY.

We bound the cost of \mathbf{GREEDY} using forbidden submatrix theory.

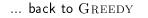
A (correct) **Lemma**: proof very easy (but skipped).

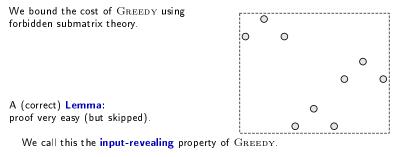
We call this the input-revealing property of GREEDY.

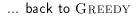
We bound the cost of \mathbf{GREEDY} using forbidden submatrix theory.

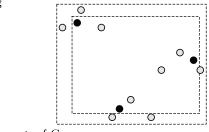
A (correct) **Lemma**: proof very easy (but skipped).

We call this the input-revealing property of GREEDY.



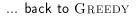


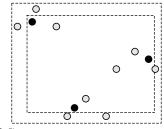




A (correct) **Lemma**: proof very easy (but skipped).

We call this the input-revealing property of Greedy .

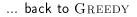


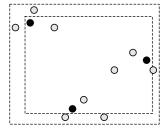


A (correct) **Lemma**: proof very easy (but skipped).

We call this the input-revealing property of Greedy .

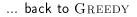
if
$$X$$
 avoids $\begin{pmatrix} 1 & & \\ & 2 & & \end{pmatrix}$

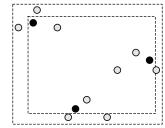




A (correct) **Lemma**: proof very easy (but skipped).

We call this the input-revealing property of Greedy .

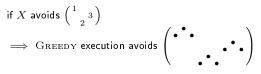




A (correct) **Lemma**: proof very easy (but skipped).

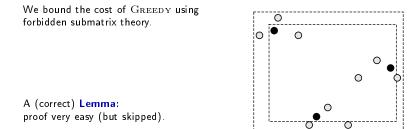
We call this the input-revealing property of GREEDY.

Consequence:



 \implies cost of GREEDY on X is at most $n \cdot 2^{\mathsf{poly}(\alpha(n))}$

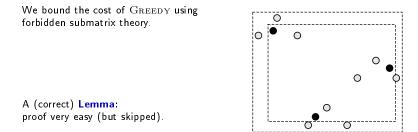
using [Klazar '00] [Keszegh '09] [Pettie '15]



Consequence:

if X avoids P

- \implies GREEDY execution avoids $P \otimes (\bullet \bullet)$
- \implies cost of Greedy on X is $n \cdot 2^{\alpha(n)^{O(|P|)}}$



Consequence:

if X avoids P

- \implies GREEDY execution avoids $P \otimes (\bullet \bullet)$
- \implies cost of Greedy on X is $n \cdot 2^{\alpha(n)^{O(|P|)}}$

 \rightarrow for various special cases we prove stronger bounds, i.e. O(n) proofs more difficult

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

 \rightarrow Lower bound on the cost of any BST algorithm

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

- \rightarrow Lower bound on the cost of any BST algorithm
- \rightarrow Conjectured to be $\Theta(OPT)$

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

- \rightarrow Lower bound on the cost of any BST algorithm
- \rightarrow Conjectured to be $\Theta(OPT)$

We show:

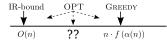
If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

- \rightarrow Lower bound on the cost of any BST algorithm
- \rightarrow Conjectured to be $\Theta(OPT)$

We show:

If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.



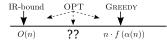
Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

 \rightarrow Lower bound on the cost of any BST algorithm

 \rightarrow Conjectured to be $\Theta(OPT)$

We show:

If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.



Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

 \rightarrow Lower bound on the cost of any BST algorithm

 \rightarrow Conjectured to be $\Theta(OPT)$

We show:

If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.

Consequence: "something's gotta give ____ ♪ ↓ ♪

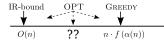
Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

 \rightarrow Lower bound on the cost of any BST algorithm

 \rightarrow Conjectured to be $\Theta(OPT)$

We show:

If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.



Consequence: "something's gotta give _____ **b**] **.**

⑦ GREEDY is in fact linear on all pattern-avoiding input

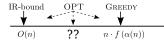
Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

 \rightarrow Lower bound on the cost of any BST algorithm

 \rightarrow Conjectured to be $\Theta(OPT)$

We show:

If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.



- ⑦ GREEDY is in fact linear on all pattern-avoiding input
- ? GREEDY is not O(1)-competitive

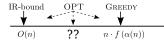
Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

 \rightarrow Lower bound on the cost of any BST algorithm

 \rightarrow Conjectured to be $\Theta(OPT)$

We show:

If X avoids P, then **IR-bound** for X is O(n), for any constant-sized P.



Consequence: "something's gotta give \square $\land \downarrow \square$

- ⑦ GREEDY is in fact linear on all pattern-avoiding input
- ? GREEDY is not O(1)-competitive
- Conjecture is false (IR-bound not tight)

On inputs that avoid an arbitrary pattern, GREEDY is linear*

On inputs that avoid an arbitrary pattern, GREEDY is linear^{*} For traversal conjecture, GREEDY is linear^{*†}

On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

- * up to $f(\alpha(n))$ factor, or
- † with preprocessing

On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

 * up to $f(\alpha(n))$ factor, or † with preprocessing

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm.

On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

```
^{*} up to f(\alpha(n)) factor, or ^{\dagger} with preprocessing
```

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a **path**

On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, G_{REEDY} is linear^{*†}

```
* up to f(\alpha(n)) factor, or 
† with preprocessing
```

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a **path** \rightarrow sequence avoiding both 231 and 213.

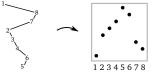
On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

```
* up to f(\alpha(n)) factor, or 
† with preprocessing
```

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a **path** \rightarrow sequence avoiding both 231 and 213.



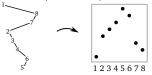
On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

```
* up to f(\alpha(n)) factor, or 
† with preprocessing
```

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a **path** \rightarrow sequence avoiding both 231 and 213.



Open Question 2

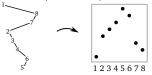
On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

```
* up to f(\alpha(n)) factor, or 
† with preprocessing
```

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a **path** \rightarrow sequence avoiding both 231 and 213.



Open Question 2

Prove $o(\log(n))$ -competitiveness for GREEDY or Splay Tree, or

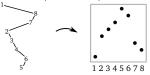
On inputs that avoid an arbitrary pattern, GREEDY is linear*

For traversal conjecture, GREEDY is linear^{*†}

```
* up to f(\alpha(n)) factor, or 
† with preprocessing
```

Open Question 1

Prove traversal conjecture unconditionally for an online algorithm. Even for preorder sequence of a **path** \rightarrow sequence avoiding both 231 and 213.



Open Question 2

Prove $o(\log(n))$ -competitiveness for GREEDY or Splay Tree, or $o(\log \log(n))$ -competitiveness for any algorithm.