
Part II

Background

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time

keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time

keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X

↑
nodes touched by access and
rotations at each time

keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X

↓
no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Geometry of BST [Demaine, Harmon, Iacono, Kane, P�atra³cu, SODA'09]

access sequence X
e.g. 4, 5, 6, 1, 2, 3

→ point set X

BST algorithm serving X

→ point set Y ⊇ X
↑

nodes touched by access and
rotations at each time keys

time

Y is a BST execution of X ⇐⇒ Y is a satis�ed superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b

a

b

a

b

a

ba

b a

b

a b

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.

(a simple geometric sweepline)

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy

↓
≈ # of points in the Greedy execution

Greedy [Lucas '88; Munro '00; Demaine et al. '09]

Greedy:
a natural o�ine BST algorithm.

In geometric view Greedy

becomes:

a natural online algorithm.
(a simple geometric sweepline)

keys

time

Task: Bound the cost of Greedy
↓

≈ # of points in the Greedy execution

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices.

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

How many points can we have while avoiding some pattern?

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

Forbidden Submatrix Theory

A useful tool since the 50s.

[Zarankiewicz 1951] [K®vári, Sós,
Turán '55] [Bollobás, Erd®s '78]
[Hart, Sharir '86] [Bienstock,
Gy®ri, '91] [Füredi, Hajnal '92]
[Marcus, Tardos '04] [Pettie '10]

Studies patterns in 0/1-matrices
points on a grid

Subsumes the pattern-avoidance mentioned earlier:

134562 contains 231

Theorems of the form:

M is a set of points on the n-by-n grid avoiding pattern P

=⇒ |M | ≤ n · fP(n).

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)
A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)
A (correct) Lemma:
proof very easy (but skipped).

keys

time

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)
A (correct) Lemma:
proof very easy (but skipped).

keys

time

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)
A (correct) Lemma:
proof very easy (but skipped).

keys

time

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids P
=⇒ Greedy execution avoids P

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)
A (correct) Lemma:
proof very easy (but skipped).

keys

time

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

keys

time

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:

proof very easy (but skipped).

If execution contains the pattern:

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:

proof very easy (but skipped).

there must be an access point inside

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:

proof very easy (but skipped).

there must be an access point inside

maybe here

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:

proof very easy (but skipped).

maybe here

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)

=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •



=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

... back to Greedy

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

Consequence:

if X avoids P

=⇒ Greedy execution avoids P ⊗ (•
• •)

=⇒ cost of Greedy on X is n · 2α(n)O(|P |)

We bound the cost of Greedy using
forbidden submatrix theory.

A �rst (WRONG) conjecture:

If X avoids
(•
•
•

)
=⇒ Greedy execution avoids

(•
•
•

)

A (correct) Lemma:
proof very easy (but skipped).

We call this the input-revealing property of Greedy.

Consequence:

if X avoids
(

1
3

2

)
=⇒ Greedy execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of Greedy on X is at most n · 2poly(α(n))

using [Klazar '00] [Keszegh '09] [Pettie '15]

Consequence:

if X avoids P

=⇒ Greedy execution avoids P ⊗ (•
• •)

=⇒ cost of Greedy on X is n · 2α(n)O(|P |)

→ for various special cases we prove stronger bounds, i.e. O(n)

proofs more di�cult

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence:

�something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

A di�erent application of the technique...

Independent Rectangle bound [Demaine et al. '09] [Wilber '89]

→ Lower bound on the cost of any BST algorithm

→ Conjectured to be Θ(OPT)

We show:
If X avoids P , then IR-bound for X is O(n), for any constant-sized P .

??

Consequence: �something's gotta give ...� �
 �

?© Greedy is in fact linear on all pattern-avoiding input

?© Greedy is not O(1)-competitive

?© Conjecture is false (IR-bound not tight)

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.

Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path

→ sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2

Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or

o(log log(n))-competitiveness for any algorithm.

Conclusion:

On inputs that avoid an arbitrary pattern, Greedy is linear
∗

For traversal conjecture, Greedy is linear
∗†

∗ up to f(α(n)) factor, or
† with preprocessing

Open Question 1
Prove traversal conjecture unconditionally for an online algorithm.
Even for preorder sequence of a path → sequence avoiding both 231 and 213.

1 2 3 4 5 6 7 8

1

2
3

4

5
6

7
8

Open Question 2
Prove o(log(n))-competitiveness for Greedy or Splay Tree, or
o(log log(n))-competitiveness for any algorithm.

