Multi-finger
Binary Search Trees

Parinya Chalermsook Mayank Goswami
László Kozma Kurt Mehlhorn Thatchaphol Saranurak
Binary Search Tree (BST)

n keys

search cost = depth + 1

Search sequence:
x_1, x_2, x_3, \ldots

Tree can be adapted using rotations, to prepare for next search.

cost = pointer moves + rotations

- offline cost: **OPT**
- online algorithms: e.g. **Splay tree**

 [Sleator, Tarjan, 1983]
Finger Search

Search starts from previous location.

Cost = amount of movement by finger.

Optimal finger search cost: OPT_1

Tree is static, chosen optimally.

search(2)
search(5)
search(7)
...

Search starts from previous location.
Multiple fingers

k fingers, stationed at nodes
search starts from any of the fingers

To serve request, must move some finger there
Tree is static, chosen optimally

cost = amount of movement by all fingers

optimal k-finger search cost: \(\text{OPT}_k \)
Multiple fingers

\[OPT_1 \geq OPT_2 \geq \cdots \geq OPT_k \geq \cdots \geq OPT_n \]

matched by online BST with rotations

[Cole et al., 2000]
[Iacono-Langerman, 2016]

Our result

matched by online BST with rotations (with small overhead)

\[OPT \leq O(OPT_1) \]

\[OPT \leq O(OPT_k) \cdot \log k \]
Our results

1. BSTs (with rotations) can simulate the k-finger optimum with small overhead:

 $$\text{OPT} \leq O(\text{OPT}_k) \cdot \log k$$

 log(k) factor is optimal.

2. There is an online BST with cost:

 $$O(\text{OPT}_k) \cdot \log^7 k$$
The proof has three ingredients:

1. Simulate k-finger strategy by BST with single root-pointer (and rotations)

2. Find online k-finger strategy

3. Learn optimal underlying tree
1. Simulate k-finger strategy by BST
with optimal $O(\log k)$ overhead,
refining previous approach with overhead $O(k)$

[Demaine, Iacono, Langerman, Özkan, 2013]

Idea: store nodes with fingers as a balanced subtree

binary search tree

finger tree
finger tree

O(k) fingers and pseudofingers, can store as e.g. AVL-tree

tendons: almost sorted, can update in O(1) amortized time
BST simulation of finger tree

- fingers and pseudofingers stored here e.g. AVL-tree
- tendons and subtrees stored here
- tendons stored as BST deque

Operations

- **access finger** --> search AVL tree ... $O(\log k)$
- **move finger** --> update connected tendons
 - insert/delete in deque ... $O(1)$
 - update node role as (pseudo)finger;
 - may trigger AVL re-balancing ... $O(\log k)$
2. Find online k-finger strategy

Goal: serve requests, minimize total movement

k-server problem

Our task is the special case when the metric is a BST

Relevant result: $O(\log^6 k)$ competitive online algorithm [Lee; Bubeck et al. 2018]
3. Learn best underlying tree

Search sequence:
\[x_1, x_2, x_3, \ldots\]

- **Idea:** Process in epochs of length \(O(n \log n)\)
- Maintain distribution over all \(\sim 4^n\) trees

When epoch starts:
- pick a tree from distribution, rotate to it
 (rotation cost amortized over epoch)

When epoch ends:
- evaluate all trees, update distribution using multiplicative-weights-update (MWU)

\[
\text{Loss of tree } T = \text{cost during epoch if we used } T
\]
MWU guarantee

overall cost < \((1 + \varepsilon)T^* + \frac{\ln N \cdot T^{\text{max}}}{\varepsilon}\)

- Max possible cost within epoch \(\sim n^2\)
- Nr. of possible trees \(\sim 4^n\)
- Total cost with best tree in hindsight
- Poly(n) additive term
Summary of main result

1. **Simulate** k-finger strategy by BST with single root-pointer (and rotations)
 - $O(\log k)$ factor loss
 - Refines technique of [Demaine et al.]

2. Find **online** k-finger strategy
 - $O(\log^6 k)$ factor loss
 - First connection between k-server and BST?

3. **Learn** optimal underlying tree
 - $O(1+\epsilon)$ factor, additive term
 - MWU technique, randomized
Applications

1. Better understand limitations of BST model

[Sleator, Tarjan, 1983]:
Splay tree cost is $O(OPT)$

Dynamic Optimality Conjecture

From our results:
then it must be $O(OPT_k \log k)$
(even $k=1$ case is hard to prove)

barrier to Dynamic Optimality
Applications

2. Understand which search sequences are easy

Example:

k-monotone sequence
(shuffle of k runs)

k-finger strategy:
each finger serves one run
(O(n) traversal of tree)
total cost: \(O(nk) \)

=> BST cost: \(O(n \log k) \)
Applications

2. Understand which search sequences are easy

Example:
weak unified bound
(search is close to a recent search)

amortized cost for search(x_k):

$$\min_t \{ \log \left| x_k - x_{k-t} \right| \} \cdot f(t)$$

- rank-diff. from recent search
- penalty factor for looking back too far

we give a k-finger strategy (not so easy)
OPEN QUESTIONS

1. De-randomize our online BST
(randomness comes from picking tree in MWU strategy)
 Possible randomized/deterministic separation?

2. Towards dynamic optimality
 Show that Splay tree matches \(O(\text{OPT}_k) \ f(k) \)
 Show that some online BST matches \(O(\text{OPT}_k) \ \log k \)
 (another \(\log(k) \) factor unavoidable if online k-server is used)