Exact exponential algorithms for two post problems

[Lothar Koemps, Freie Universitaet Berlin, SWAT 2020]

Partially ordered set \(P = (X, \prec) \)

- ground set
- binary relation

\(\prec \)
 - transitive
 - irreflexive

Viewed as a (transitive) DAG

\[\text{Def. Linear extension of } P = (X, \prec): \]

- total order on \(X \) that is consistent with \(\prec \)
- "contains \(\prec \)"

\[\rightarrow \text{ a topological order of the DAG} \]

- Def. \(\# \text{LE} \) problem: Given \(P \), compute its number of linear extensions.

- Well-studied, fundamental problem:
 - optimal sorting
 - probabilistic ranking
 - \(\frac{1}{3} : \frac{2}{3} \) conjecture
 - \(\ldots \)

- \[\text{[Llinel, 1986]} \]
- \[\text{[Louiwi, 1986]} \]
- \[\text{[Stanley, 1986]} \]
- \[\text{[Dyier, Frick, Kawai, 1990]} \]

- \#LE is \#P-hard \[\text{[Brightwell, Winkler, 1990]} \]

- \#LE can be solved in time \(O(n \cdot 2^n) \) \[\text{[Similar DP as Bellman-Held-Karp for TSP]} \]

- Open Question: Solve \#LE in time \(O \left((2-\varepsilon)^n \right) \) for some \(\varepsilon > 0 \)
Dimension of a poset

Def: \(\dim(P) \leq d \) if \(P \) can be embedded in \(\mathbb{R}^d \) s.t. "\(< \)" is "point domination":

\[
\begin{align*}
\forall a, b &
\quad a < b \iff a_i < b_i, \\
&
\quad \ldots \\
&
\quad a_d < b_d
\end{align*}
\]

Well-studied property [Trofim, 1992]

2-d posets already have rich structure:

\#\text{LE} is \#P-hard in 2-d posets [Ditmer, Pak, 2018]

Question: Solve \#\text{LE} in time \(O((2-\varepsilon)^n) \) in 2-d posets.

Result: \(O(1.32^n) \)

Standard DP:

\[
\#\text{LE}(X) = \sum_{x \in \text{max}(X)} \#\text{LE}(X \setminus \{x\})
\]

\(\#\text{LE}(\emptyset) = 1 \)

Actual running time: \(\# \) reachable subsets = \(\# \) downsets of \(X \)
Suppose \(P \) has a large matching \(M \), \(|M| = \alpha \cdot n \)

matched pairs:

\[x_i < y_i \]

\[x_{|M|} < y_{|M|} \]

Obs. Downsets may contain both \(x_i, y_i \), neither \(x_i, y_i \), only \(x_i \), only \(y_i \)

\[
\# \text{downsets} \leq 3^{|M|} \cdot 2^{n-2|M|} = \left[2 \cdot \left(\frac{3}{4} \right)^{|M|} \right]^n
\]

(if \(M \) is large, we're O.K.)

Suppose \(P \) has no large matching (max matching \(M \), with \(|M| = \alpha \cdot n \))

→ Complement of \(M \) is an independent set = antichain

Antichain \(A \), \(|A| = (1-2\alpha)^n\)

- \(2n - \alpha n \) points in \(M \) split \(A \) into \(\leq 4\alpha n \) groups

- Points in a group are indistinguishable
Group sizes $n_1 + n_2 + \ldots + n_e = (1-2\xi)n$

Obs. In a reachable state we need to know # points from each group, but not the exact subset.

Replace groups by chains of same size (connections to M preserved)

Solve #LE in modified Poset (correct by factor $n_1! \cdot n_2! \cdot \ldots \cdot n_e!$)

$$
\#\text{downsets} = \prod_{i=1}^{e} (1+n_i) \cdot 3^{\alpha n} \leq \left[\frac{(1-2\xi)n + \ell}{\ell} \right]^{\ell} \cdot 3^{\alpha n}
$$

$$
\sum_{i=1}^{e} (1+n_i) = (1-2\xi)n + \ell
$$

(product is max. if all terms equal)

$$
\leq \left[\frac{(1-2\xi)n + 4\alpha n}{4\alpha n} \right]^{4\alpha n} \cdot 3^{\alpha n}
$$

$$
= \left[\frac{1+2\xi}{4\alpha} \cdot 3^{\alpha} \right]^{\alpha n}
$$

Summary:

- Using matching only: $2 \cdot \left(\frac{3}{4} \right)^{\frac{\alpha n}{\ell}}$
- $\alpha = \frac{1}{6}$
- Using antichain: $\frac{1+2\xi}{4\alpha} \cdot 3^{\alpha}$

Graph:

- antichain
- matching only

1.91^n
Improvements:

I. Unmatched edges create only 2xh groups (if M chosen carefully)

II. Packing larger subgraphs

More tricks:
- Pack larger subgraphs (4,5,...)
- Combine matched edges into quartets
- Split M into groups
- ...

Open Question: Solve #LE in time $O((2-\varepsilon)^n)$ when $\dim(p) \geq 3$.
Jump # problem

\[|k_{t^*} - k_{t^*}| \rightarrow \text{slight improvement } O(1.82^n) \]